Browsing by Subject "CHLOROPLAST DNA"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A diploids-first approach to species delimitation and interpreting polyploid evolution in the fern genus astrolepis (pteridaceae)(Systematic Botany, 2010-04-01) Beck, James B; Windham, Michael D; Yatskievych, George; Pryer, Kathleen MPolyploidy presents a challenge to those wishing to delimit the species within a group and reconstruct the phylogenetic relationships among these taxa. A clear understanding of the tree-like relationships among the diploid species can provide a framework upon which to reconstruct the reticulate events that gave rise to the polyploid lineages. In this study we apply this "diploids-first" strategy to the fern genus Astrolepis (Pteridaceae). Diploids are identified using the number of spores per sporangium and spore size. Analyses of plastid and low-copy nuclear sequence data provide well-supported estimates of phylogenetic relationships, including strong evidence for two morphologically distinctive diploid lineages not recognized in recent treatments. One of these corresponds to the type of Notholaena deltoidea, a species that has not been recognized in any modern treatment of Astrolepis. This species is resurrected here as the new combination Astrolepis deltoidea . The second novel lineage is that of a diploid initially hypothesized to exist by molecular and morphological characteristics of several established Astrolepis allopolyploids. This previously missing diploid species is described here as Astrolepis obscura. © Copyright 2010 by the American Society of Plant Taxonomists.Item Open Access Phylogenetic relationships of the enigmatic fern families Hymenophyllopsidaceae and Lophosoriaceae: Evidence from rbcL nucleotide sequences(Plant Systematics and Evolution, 1999-01-01) Wolf, PG; Sipes, SD; White, MR; Martines, ML; Pryer, KM; Smith, AR; Ueda, KNucleotide sequences from rbcL were used to infer relationships of Lophosoriaceae and Hymenophyllopsidaceae. The phylogenetic positions of these two monotypic fern families have been debated, and neither group had been included in recent molecular systematic studies of ferns. Maximum parsimony analysis of our data supported a sister relationship between Lophosoria and Dicksonia, and also between Hymenophyllopsis and Cyathea. Thus, both newly-examined families appear to be part of a previously characterized and well-supported clade of tree ferns. The inferred relationships of Lophosoria are consistent with most (but not all) recent treatments. However, Hymenophyllopsis includes only small delicate plants superficially similar to filmy ferns (Hymenophyllaceae), very different from the large arborescent taxa. Nevertheless, some synapomorphic characteristics are shared with the tree fern clade. Further studies on gametophytes of Hymenophyllopsis are needed to test these hypotheses of relationship.Item Open Access Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences.(American journal of botany, 2004-10) Pryer, Kathleen M; Schuettpelz, Eric; Wolf, Paul G; Schneider, Harald; Smith, Alan R; Cranfill, RaymondThe phylogenetic structure of ferns (= monilophytes) is explored here, with a special focus on the early divergences among leptosporangiate lineages. Despite considerable progress in our understanding of fern relationships, a rigorous and comprehensive analysis of the early leptosporangiate divergences was lacking. Therefore, a data set was designed here to include critical taxa that were not included in earlier studies. More than 5000 bp from the plastid (rbcL, atpB, rps4) and the nuclear (18S rDNA) genomes were sequenced for 62 taxa. Phylogenetic analyses of these data (1) confirm that Osmundaceae are sister to the rest of the leptosporangiates, (2) resolve a diverse set of ferns formerly thought to be a subsequent grade as possibly monophyletic (((Dipteridaceae, Matoniaceae), Gleicheniaceae), Hymenophyllaceae), and (3) place schizaeoid ferns as sister to a large clade of "core leptosporangiates" that includes heterosporous ferns, tree ferns, and polypods. Divergence time estimates for ferns are reported from penalized likelihood analyses of our molecular data, with constraints from a reassessment of the fossil record.Item Open Access Phylogeny, divergence time estimates, and phylogeography of the diploid species of the polypodium vulgare complex (Polypodiaceae)(Systematic Botany, 2014-01-01) Sigel, EM; Windham, MD; Haufler, CH; Pryer, KM© 2014 by the American Society of Plant Taxonomists. The Polypodium vulgare complex (Polypodiaceae) comprises a well-studied group of fern taxa whose members are cryptically differentiated morphologically and have generated a confusing and highly reticulate species cluster. Once considered a single species spanning much of northern Eurasia and North America, P. vulgare has been segregated into 17 diploid and polyploid taxa as a result of cytotaxonomic work, hybridization experiments, and isozyme studies conducted during the 20th century. Despite considerable effort, however, the evolutionary relationships among the diploid members of the P. vulgare complex remain poorly resolved. Here we infer a diploids-only phylogeny of the P. vulgare complex and related species to test previous hypotheses concerning relationships within Polypodium sensu stricto. Using sequence data from four plastid loci (atpA, rbcL, matK, and trnG-trnR), we recovered a monophyletic P. vulgare complex comprising four well-supported clades. The P. vulgare complex is resolved as sister to the Neotropical P. plesiosorum group and these, in turn, are sister to the Asian endemic Pleurosoriopsis makinoi. Using divergence time analyses incorporating previously derived age constraints and fossil data, we estimate an early Miocene origin for the P. vulgare complex and a late Miocene-Pliocene origin for the four major diploid lineages of the complex, with the majority of extant diploid species diversifying from the late Miocene through the Pleistocene. Finally, we use our node age estimates to reassess previous hypotheses, and to propose new hypotheses, about the historical events that shaped the diversity and current geographic distribution of the diploid species of the P. vulgare complex.Item Open Access rbcL data reveal two monophyletic groups of filmy ferns (Filicopsida: Hymenophyllaceae).(American journal of botany, 2001-06) Pryer, KM; Smith, AR; Hunt, JS; Dubuisson, JYThe "filmy fern" family, Hymenophyllaceae, is traditionally partitioned into two principal genera, Trichomanes s.l. (sensu lato) and Hymenophyllum s.l., based upon sorus shape characters. This basic split in the family has been widely debated this past century and hence was evaluated here by using rbcL nucleotide sequence data in a phylogenetic study of 26 filmy ferns and nine outgroup taxa. Our results confirm the monophyly of the family and provide robust support for two monophyletic groups that correspond to the two classical genera. In addition, we show that some taxa of uncertain affinity, such as the monotypic genera Cardiomanes and Serpyllopsis, and at least one species of Microtrichomanes, are convincingly included within Hymenophyllum s.l. The tubular- or conical-based sorus that typifies Trichomanes s.l. and Cardiomanes, the most basal member of Hymenophyllum s.l., is a plesiomorphic character state for the family. Tubular-based sori occurring in other members of Hymenophyllum s.l. are most likely derived independently and more than one time. While rbcL data are able to provide a well-supported phylogenetic estimate within Trichomanes s.l., they are inadequate for resolving relationships within Hymenophyllum s.l., which will require data from additional sources. This disparity in resolution reflects differential rates of evolution for rbcL within Hymenophyllaceae.Item Open Access The utility of nuclear gapCp in resolving polyploid fern origins(Systematic Botany, 2008-10-01) Schuettpelz, E; Grusz, AL; Windham, MD; Pryer, KMAlthough polyploidy is rampant in ferns and plays a major role in shaping their diversity, the evolutionary history of many polyploid species remains poorly understood. Nuclear DNA sequences can provide valuable information for identifying polyploid origins; however, remarkably few nuclear markers have been developed specifically for ferns, and previously published primer sets do not work well in many fern lineages. In this study, we present new primer sequences for the amplification of a portion of the nuclear gapCp gene (encoding a glyceraldehyde-3-phosphate dehydrogenase). Through a broad survey across ferns, we demonstrate that these primers are nearly universal for this clade. With a case study in cheilanthoids, we show that this rapidly evolving marker is a powerful tool for discriminating between autopolyploids and allopolyploids. Our results indicate that gapCp holds considerable potential for addressing species-level questions across the fern tree of life. © Copyright 2008 by the American Society of Plant Taxonomists.