Browsing by Subject "Cadherins"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity.(PLoS Genet, 2016-01) Li, Qingyun; Barish, Scott; Okuwa, Sumie; Maciejewski, Abigail; Brandt, Alicia T; Reinhold, Dominik; Jones, Corbin D; Volkan, Pelin CayirliogluSensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.Item Open Access C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways.(Circulation, 2017-11) Yan, Wenjun; Guo, Yongzhen; Tao, Ling; Lau, Wayne Bond; Gan, Lu; Yan, Zheyi; Guo, Rui; Gao, Erhe; Wong, G William; Koch, Walter L; Wang, Yajing; Ma, Xin-LiangBackground
Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection.Methods
Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9.Results
Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death.Conclusions
We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.Item Open Access CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and β1-integrin signaling pathways.(J Invest Dermatol, 2013-01) Ke, Hengning; Augustine, Christina K; Gandham, Vineela D; Jin, Jane Y; Tyler, Douglas S; Akiyama, Steven K; Hall, Russell P; Zhang, Jennifer YThe molecular mechanisms mediating cylindromatosis (CYLD) tumor suppressor function appear to be manifold. Here, we demonstrate that, in contrast to the increased levels of phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CYLD was decreased in a majority of the melanoma cell lines and tissues examined. Exogenous expression of CYLD but not its catalytically deficient mutant markedly inhibited melanoma cell proliferation and migration in vitro and subcutaneous tumor growth in vivo. In addition, the melanoma cells expressing exogenous CYLD were unable to form pulmonary tumor nodules following tail-vein injection. At the molecular level, CYLD decreased β1-integrin and inhibited pJNK induction by tumor necrosis factor-α or cell attachment to collagen IV. Moreover, CYLD induced an array of other molecular changes associated with modulation of the "malignant" phenotype, including a decreased expression of cyclin D1, N-cadherin, and nuclear Bcl3, and an increased expression of p53 and E-cadherin. Most interestingly, coexpression of the constitutively active MKK7 or c-Jun mutants with CYLD prevented the above molecular changes, and fully restored melanoma growth and metastatic potential in vivo. Our findings demonstrate that the JNK/activator protein 1 signaling pathway underlies the melanoma growth and metastasis that are associated with CYLD loss of function. Thus, restoration of CYLD and inhibition of JNK and β1-integrin function represent potential therapeutic strategies for treatment of malignant melanoma.Item Open Access Evaluation of an epithelial plasticity biomarker panel in men with localized prostate cancer.(Prostate Cancer Prostatic Dis, 2016-03) Armstrong, AJ; Healy, P; Halabi, S; Vollmer, R; Lark, A; Kemeny, G; Ware, K; Freedland, SJBACKGROUND: Given the potential importance of epithelial plasticity (EP) to cancer metastasis, we sought to investigate biomarkers related to EP in men with localized prostate cancer (PC) for the association with time to PSA recurrence and other clinical outcomes after surgery. METHODS: Men with localized PC treated with radical prostatectomy at the Durham VA Medical Center and whose prostatectomy tissues were included in a tissue microarray (TMA) linked to long-term outcomes. We performed immunohistochemical studies using validated antibodies against E-cadherin and Ki-67 and mesenchymal biomarkers including N-cadherin, vimentin, SNAIL, ZEB1 and TWIST. Association studies were conducted for each biomarker with baseline clinical/pathologic characteristics an risk of PSA recurrence over time. RESULTS: Two hundred and five men contributed TMA tissue and had long-term follow-up (median 11 years). Forty-three percent had PSA recurrence; three died of PC. The majority had high E-cadherin expression (86%); 14% had low/absent E-cadherin expression. N-cadherin was rarely expressed (<4%) and we were unable to identify an E-to-N-cadherin switch as independently prognostic. No associations with clinical risk group, PSA recurrence or Gleason sum were noted for SNAIL, ZEB1, vimentin or TWIST, despite heterogeneous expression between patients. We observed an association of higher Ki-67 expression with Gleason sum (P=0.043), National Comprehensive Cancer Network risk (P=0.013) and PSA recurrence (hazard ratio 1.07, P=0.016). CONCLUSIONS: The expression of EP biomarkers in this cohort of men with a low risk of PC-specific mortality was not associated with aggressive features or PSA relapse after surgery.Item Open Access Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta.(Reproductive biology and endocrinology : RB&E, 2015-07) Li, Liping; Schust, Danny JBackground
The syncytialization of cytotrophoblast cells to syncytiotrophoblast is central to human placental transport and hormone production. Many techniques for in vitro study of this process have been proposed and new investigators to the field may find the literature in the field daunting. Here, we present a straightforward and reliable method to establish this important model using modern but readily available tools and reagents.Methods
Villous cytotrophoblast cells are obtained from term placenta using mild enzymatic degradation, Percoll gradient centrifugation, negative magnetic cell sorting using an antibody against classical major histocompatibility complex molecules and in vitro culture on a matrix-coated growth surface.Results
The purity of isolated cytotrophoblast cells exceeds 98 % as assessed by cytokeratin-7 expression using flow cytometry. Contamination by mesenchymal cells, extravillous trophoblast cells, leukocytes, Hofbauer and endothelial cells is minimized (less than 2 % when analyzed for vimentin, HLA-G, CD45, CD163 and CD31 using flow cytometry). Isolated cytotrophoblast cells began to aggregate into monolayers of mononucleated cells within about 12 h of plating. By 72 h in culture, most cytotrophoblast cells have differentiated into syncytiotrophoblast as demonstrated by a loss of intercellular E-cadherin expression upon fusion into multinucleated syncytia. After 72 h in culture, nearly every cultured cell expresses syncytiotrophoblast markers, including cytokeratin-7, human chorionic gonadotropin-β (β-hCG) and the fusion-related proteins glial cell missing-1 (GCM-1) and syncytin.Conclusions
We present an efficient and reliable method for isolating of cytotrophoblast cells with high purity and complete differentiation into syncytiotrophoblast in vitro.Item Open Access NgBR is essential for endothelial cell glycosylation and vascular development.(EMBO Rep, 2016-02) Park, Eon Joo; Grabińska, Kariona A; Guan, Ziqiang; Sessa, William CNgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.Item Open Access The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1.(J Cell Biol, 2012-04-30) Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli; Chen, Chen; Yang, Chih-Sheng; Kornbluth, SallyProapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.