Browsing by Subject "Caenorhabditis elegans"
Results Per Page
Sort Options
Item Open Access C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.(PLoS One, 2010-07-26) TeKippe, Michael; Aballay, AlejandroReproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.Item Open Access dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.(PLoS Genet, 2015-12) Kaplan, RE; Chen, Y; Moore, BT; Jordan, JM; Maxwell, CS; Schindler, AJ; Baugh, LRNutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development.Item Open Access Effects of chemical exposures on mitochondrial mutagenesis across species(2022) Leuthner, Tess CMitochondria are essential organelles required for all eukaryotic life on earth. Each organelle contains multiple copies of the mitochondrial genome (mtDNA) that encodes genes essential for energy production. Mutations in the mitochondrial genome are associated with mitochondrial diseases and diseases of aging, particularly neurodegenerative diseases, such as Parkinson’s Disease, and cancer. mtDNA mutation rates are often higher than nuclear DNA mutation rates. However, the origin of mtDNA mutations is poorly understood. Mitochondria lack many of the basic DNA repair mechanisms that are in the nucleus, potentially rendering mtDNA vulnerable to DNA damage-induced mtDNA mutations. Very few studies have investigated the impact of chemical exposures, in particular pollutants, on mtDNA mutagenesis, as reviewed in Chapter 4 of this dissertation (published as Leuthner and Meyer, 2021). Therefore, the two research aims of this thesis were designed to investigate the role of chemical exposures on mtDNA damage and mutagenesis in two species, chosen based on particular research strengths that each offered. The overarching hypothesis of this dissertation was that exposure to known nuclear genotoxicants and mutagens would result in the accumulation of mtDNA damage, which would ultimately lead to mtDNA mutations. The first aim of this thesis was to investigate the impact of the ubiquitous pollutant, cadmium (Cd), on mtDNA mutagenesis in the aquatic keystone species, Daphnia pulex. Cd is a known nuclear mutagen and carcinogen, yet the effects of Cd exposure on mtDNA mutations remain unknown. D. pulex offers a number of major advantages for this investigation, as discussed in Chapter 2. A unique aspect for this thesis was the use of a wild, Cd-tolerant population of D. pulex. Remarkably, this population of D. pulex sampled from Simon Lake in Sudbury, Ontario, Canada has adapted to high levels of Cd due to over a century of exposure to pollution from mining and smelting processes. Thousands of generations of experimental evolution were performed under laboratory conditions (an approach termed Mutation Accumulation, or MA, lines) in a Simon Lake isolate and an isolate collected from pristine Buck Lake (Dorset, Ontario, Canada) in both the presence and absence of Cd. This allowed investigation of the effects of Cd on mtDNA mutagenesis in D. pulex populations with very different evolutionary histories. Whole genome sequencing was conducted and mtDNA reads were extracted for analysis of mtDNA mutation frequencies, rates, and signatures. Hundreds of single nucleotide mutates were detected after >2,000 and >12,000 total generations of mutation accumulation, or about 40 to 250 fold more mutations than previous Daphnia mtDNA MA line studies. This afforded the resolution to determine the mechanism of endogenous mtDNA mutagenesis in Daphnia for the first time; these results indicate that endogenous mtDNA mutagenesis is likely mostly driven by polymerase γ error at sites of oxidized and deaminated cytosines (G A/C T). At the earlier timepoint, Cd exposure further increased the rate of this mutation in the Cd-sensitive Buke Lake Daphnia compared to the Cd-tolerant Simon Lake Daphnia by about 3.6-fold. The results of this research aim suggest that Cd has a small effect on mtDNA mutagenesis, and that the adapted population is resistant to Cd-induced mtDNA mutations. However, after an additional >10,000 generations of mutation accumulation, there was no effect of Cd on this mutation spectrum, and the number of mtDNA mutations that were present at very low frequency increased significantly compared to the earlier timepoint. A small number of mutations did reach fixation or near-fixation however, and these mutations are discussed individually in Chapter 2. We propose that this result is consistent with natural selection acting on germline mtDNA mutation rates and heteroplasmy. Mitochondria harbor various quality control mechanisms that act in response to stress and mitochondrial dysfunction, such as mitophagy, fission, and fusion. Previous studies indicate that mitophagy may be involved in purifying selection against deleterious mtDNA mutations, in addition to targeted degradation of organelles that contain damaged mtDNA. Therefore, the next research aim of this thesis was to investigate the role of mitophagy on the accumulation of mtDNA damage and mutagenesis after exposure to Cd and another genotoxin, Aflatoxin B1 (AfB1), in the organism Caenorhabditis elegans. C. elegans are often used for MA studies to investigate mutational processes in both the nuclear and mitochondrial genomes, and offer a variety of strengths for such studies, as discussed in Chapter 3. A particular strength for the purposes of this thesis was the ability to work with strains carrying mutations in mitophagy genes. A MA experiment was conducted in wild-type C. elegans and two mitophagy-deficient strains, dct-1 and pink-1, in control, 50µM Cd, and 10µM AfB1 conditions. AfB1 was selected because it causes mtDNA damage that is not expected to be efficiently repaired in mtDNA. After an average of 50 generations of MA, about 10 MA lines were selected for each strain/treatment combination for Duplex Sequencing. Duplex Sequencing is an ultra-sensitive, error-corrected sequencing approach that allows for detection of mutations as low as 1 in 10,000 base pairs. Until the preparation of these samples, no study had yet conducted targeted mtDNA Duplex Sequencing in C. elegans. Wild-type and mitophagy-deficient strains all had mutation spectra indicative of oxidative damage driving mtDNA mutagenesis (GT/CA), contrary to what was observed in Daphnia in Aim 1, and contrary to what has been reported in other organisms. However, this confirmed results from a very recent study that also used mtDNA targeted Duplex Sequencing of wild-type C. elegans. Surprisingly, even though more mtDNA mutations were detected and at a lower frequency than ever previously reported, there was no clear effect of either Cd of AfB1 exposure on mtDNA mutations in any strain, despite a marginally significant increase in G:C A:T mutations in pink-1 AfB1 MA lines compared to wild-type AfB1 MA lines. Overall, this suggests that mitochondria are resistant to exogenous damage-induced point mutations in C. elegans. Further investigations into what mechanisms are responsible for maintaining mtDNA homeostasis that are independent of mitophagy are an exciting future next step. Understanding the impact of chemicals on mtDNA mutations is critical for human and environmental health, as addressed in the Chapter 4 “Mitochondrial DNA mutagenesis: A feature of and biomarker for environmental health,” which has been published as a review. The primary research chapters of this dissertation (Chapters 2 and 3) further contribute to understanding how chemicals impact mitochondrial genome quality and integrity. Collectively, it will be critical to continue to use improved sequencing technologies to continue to investigate the origin and mechanisms of mtDNA mutagenesis resulting from both endogenous and exogenous factors.
Item Open Access From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.(Toxicol Sci, 2016-08) Luz, Anthony L; Godebo, Tewodros R; Bhatt, Dhaval P; Ilkayeva, Olga R; Maurer, Laura L; Hirschey, Matthew D; Meyer, Joel NMillions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.Item Restricted High-throughput isolation and mapping of C. elegans mutants susceptible to pathogen infection.(PLoS One, 2008-08-06) Fuhrman, LE; Shianna, KV; Aballay, AWe present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5-8 megabase sub-chromosomal region.Item Open Access Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways.(PLoS Genet, 2014-06) Schindler, Adam J; Baugh, L Ryan; Sherwood, David ROrganisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint.Item Open Access Interactions between oxidative stress and insulin/IGF-1 signaling for starvation resistance in Caenorhabditis elegans(2019-04-22) Jiao, MeganReactive oxygen species (ROS) are a natural byproduct of metabolism with roles in cell signaling and homeostasis but also generate oxidative stress. Past research demonstrates that ROS are a major factor in pathological conditions and the aging process in Caenorhabditis elegans and other organisms. Additionally, transcription factor gene daf-16 from the insulin/IGF-1 signaling (IIS) pathway is thought to help manage oxidative stress to mitigate such consequences, which may be partly due to endogenous antioxidant genes downstream of it. Furthermore, exogenous antioxidant drugs such as N-acetylcysteine (NAC) have been found to extend mean and maximum survival time in C. elegans under a variety of conditions, including exposure to oxidative stress, high heat, and UV radiation. However, their effects on starvation resistance have not yet been examined. To uncover how the IIS pathway interacts with ROS and antioxidants in C. elegans, we performed assays for two measures of starvation resistance: starvation survival and growth rate following starvation, which enabled us to investigate how the presence and absence of ROS impacted the starvation recovery process. We demonstrated that NAC can significantly increase and decrease survival in wild-type worms in a dose-dependent manner. Additionally, NAC also increased worm length, a metric of their growth rate. In contrast, daf-16 mutants exposed to NAC had decreased size and survival. Moreover, mutating endogenous antioxidant genes downstream of daf-16 did not cause a significant decrease in worm survival. These complex interactions between IIS and NAC suggest that genotype may position worms at different baselines on a hormesis curve for antioxidants and consequently alter their sensitivity to ROS quenching.Item Open Access Later-life Effects of Mitochondrial DNA Damage During Development in the Whole Organism Model Caenorhabditis elegans(2012) Leung, Maxwell CKEarly life exposure to mitochondrial toxicants, including paraquat, rotenone, and manganese, has been hypothesized to promote early onset of genetic mitochondrial disorders as well as common degenerative diseases such as Parkinson's Disease and Alzheimer's Disease. This dissertation aimed to investigate the biochemical and physiological effects of early life exposure to mitochondrial genotoxicants during development in the whole organism modelC. elegans. In the first experiment, a panel of model mammalian neurotoxicants and heavy metal ions was screened for mitochondrial genotoxicity by measuring mitochondrial DNA (mtDNA) copy number and damage in C. elegans. Exposures to paraquat, cumene hydroperoxide, rotenone, maneb, cadmium (II) chloride, and manganese (II) chloride have no significant effect on the mtDNA : nuclear DNA (nuDNA) ratio; only exposure to paraquat resulted in higher mtDNA than nuDNA damage level.In the second experiment, a laboratory method was developed to generate persistent mtDNA damage in larval C. elegans using serial ultraviolent C (UVC) exposures. While the mitochondrial DNA damage persisted from L1 to L4 stage, there was no difference between mitochondrial copy number of the control and UVC treated worms. The UVC treatment significantly inhibited both ATP level and oxygen consumption 24 and 48 hr after the exposure, while the mitochondrial mRNA expression was inhibited 3 hr after the exposure. The pink-1 mutation, a mitochondrial serine/threonine-protein kinase involved in the mitophagy process, appeared to limit the growth inhibitory effect of UVC treatment and increase the mitochondrial DNA content of the organism. In the third experiment,larval C. elegans was exposed to UVC and paraquat and examined using differential interference contrast and fluorescence confocal microscopy. Both resulted in detectable, dose-dependent lesions in dopaminergic CEP neurons in adult C. elegans. Neither significant lesions in the GABAergic dorsal nerve cord nor any sign of pharyngeal necrosis were detected. This work demonstrated a mechanism in which early life exposure to mitochondrial genotoxicants could result in both biochemical and physiological changes in later stages of life, thereby highlighting the potential health hazard of time-delayed effects of these chemicals in the environment.
Item Open Access Muscle contraction alters hemicentin dynamics at the B-LINK: a newly identified basement membrane adhesion system that connects tissues.(2017-05-11) Johnson, JamesBasement membranes (BMs) are thin, dense sheets of extracellular matrix found covering most tissues in multicellular organisms. In some instances, BMs of adjacent tissues can become linked and attach tissues together. A better understanding of BM-BM adhesion can help elucidate the mechanisms of conditions like Alport syndrome, a human pathology characterized by a loss of kidney function due to a failed BM-BM linkage. In order to further characterize the linkage of neighboring tissues through their BMs, I investigated how the Basement Membrane Linkage complex (B-LINK), a complex that mediates BM-BM adhesion at the uterine-hypodermal juncture in C. elegans, responds to biomechanical force. To accomplish this, I determined the necessity of specific BM proteins to B-LINK structural integrity by performing gene knockdown with RNA interference (RNAi) and scoring for vulval rupture, a phenotype that results from a disrupted B- LINK. Type IV collagen was the only common BM component to be identified as an important factor in BM adhesion due to high vulval rupture percentages when it was knocked down at the L1 (80.5%) and L4 (20.0%) larval stages (Fisher’s exact = 0.0001). Additionally, I used fluorescence recovery after photobleaching (FRAP) to measure the rate of the protein turnover of the B-LINK component hemicentin under different conditions. These FRAP experiments revealed that muscle contraction in animals significantly increases the hemicentin turnover rate when compared to immobilized worms over the same 15-minute time course (76.7% vs. 24.3%, p-value = 0.0041). These results provide a better understanding of which BM components are essential to B-LINK function and has revealed that muscle contraction influences B-LINK dynamics.Item Open Access Mutation accumulation may be a minor force in shaping life history traits.(PLoS One, 2012) Dańko, Maciej Jan; Kozłowski, Jan; Vaupel, James Walton; Baudisch, AnnetteIs senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait--the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages.Item Open Access Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.(Genome Res, 2012-10) Maxwell, Colin S; Antoshechkin, Igor; Kurhanewicz, Nicole; Belsky, Jason A; Baugh, L RyanNutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.Item Open Access Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression.(Mol Syst Biol, 2008) Yanai, Itai; Baugh, L Ryan; Smith, Jessica J; Roehrig, Casey; Shen-Orr, Shai S; Claggett, Julia M; Hill, Andrew A; Slonim, Donna K; Hunter, Craig PBiological networks are inherently modular, yet little is known about how modules are assembled to enable coordinated and complex functions. We used RNAi and time series, whole-genome microarray analyses to systematically perturb and characterize components of a Caenorhabditis elegans lineage-specific transcriptional regulatory network. These data are supported by selected reporter gene analyses and comprehensive yeast one-hybrid and promoter sequence analyses. Based on these results, we define and characterize two modules composed of muscle- and epidermal-specifying transcription factors that function together within a single cell lineage to robustly specify multiple cell types. The expression of these two modules, although positively regulated by a common factor, is reliably segregated among daughter cells. Our analyses indicate that these modules repress each other, and we propose that this cross-inhibition coupled with their relative time of induction function to enhance the initial asymmetry in their expression patterns, thus leading to the observed invariant gene expression patterns and cell lineage. The coupling of asynchronous and topologically distinct modules may be a general principle of module assembly that functions to potentiate genetic switches.Item Open Access Pol II docking and pausing at growth and stress genes in C. elegans.(Cell Rep, 2014-02-13) Maxwell, Colin S; Kruesi, William S; Core, Leighton J; Kurhanewicz, Nicole; Waters, Colin T; Lewarch, Caitlin L; Antoshechkin, Igor; Lis, John T; Meyer, Barbara J; Baugh, L RyanFluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, "docked" Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.Item Open Access Population Sequencing for Studying Natural and Artifcial Variation in C. elegans(2017) Moore, Brad T.The advent of high coverage and low cost sequencing technologies has allowed for
newer and more powerful approaches in molecular and population genetics. Transposon
sequencing, where genome-saturated mutant populations allele frequencies are
measured before and after selection, functionally characterizes each and every gene
in the genome in a single experiment. The approach has been successfully applied
to a variety of phenotypes in a variety of unicellular systems: growth and motility
in E. coli, synthetic genetic interactions in yeast, and in vitro pathogen-resistance in
mammalian cell lines. However, transposon insertion typically produces null alleles,
which can be valuable to identify gene function, but evolutionary insight relies on
identifcation of naturally occurring polymorphisms affecting the trait of interest.
Genome-wide association studies (GWAS) can be used to study the effect of natural
genetic variation on a trait, but they grow prohibitively expensive if the number of
individuals to genotype and phenotype becomes large.
Here I describe the application of transposon sequencing and pooled sequencing
GWAS in the whole metazoan model, Caenorhabditis elegans. Transposon sequencing
has not been previously implemented in an animal model. I have sequenced a control
library using our method, C. elegans transposon sequencing (CeTnSeq). We have
constructed a new Mos1 transposon mutator strain that is more convenient to use
than the existing strain and allows for extra-chromosomal insertions to be degraded
by restriction digest. My preliminary results show that our method is qualitatively
effective at identifying transposon insertion sites, but suffers from PCR duplication
error. I propose to optimize the number of PCR cycles in the library and to include
unique molecular identifiers (UMI) in the library adaptor. I also show that the
restriction digest is effective at removing extra-chromosomal array insertions from
the library.
I constructed simulation models to help design optimal Ce-TnSeq experiments
with respect to statistical power for a proposed starvation survival assay. I considered
many parameters affecting the design, including: culture size, number of generations,
expected effect size, sequencing coverage, and sample size. I show that the number
of homozygous mutant animals in the screen is a critical factor in the design of
experiments. I also saw diminishing returns with respect to increasing sample size
and sequencing depth. These simulations will be invaluable in designing future Ce-
TnSeq experiments and identifying critical aspects of the protocol to optimize.
We performed pooled sequencing (using restriction-site associated DNA sequencing)
on a population of 95 wild isolates subjected to starvation. I identified strains
that were resistant and sensitive to starvation, and we verified these results using
traditional methods. We used our population sequencing data to perform an association
study of starvation survival across the 95 strains, and identified two statistically
significant quantitative trait loci.
Item Open Access Recovery from an acute infection in C. elegans requires the GATA transcription factor ELT-2.(PLoS Genet, 2014-10) Head, Brian; Aballay, AlejandroThe mechanisms involved in the recognition of microbial pathogens and activation of the immune system have been extensively studied. However, the mechanisms involved in the recovery phase of an infection are incompletely characterized at both the cellular and physiological levels. Here, we establish a Caenorhabditis elegans-Salmonella enterica model of acute infection and antibiotic treatment for studying biological changes during the resolution phase of an infection. Using whole genome expression profiles of acutely infected animals, we found that genes that are markers of innate immunity are down-regulated upon recovery, while genes involved in xenobiotic detoxification, redox regulation, and cellular homeostasis are up-regulated. In silico analyses demonstrated that genes altered during recovery from infection were transcriptionally regulated by conserved transcription factors, including GATA/ELT-2, FOXO/DAF-16, and Nrf/SKN-1. Finally, we found that recovery from an acute bacterial infection is dependent on ELT-2 activity.Item Open Access Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform.(Neuron, 2012-11-08) Yan, Dong; Jin, YishiMAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.Item Open Access Robo functions as an attractive cue for glial migration through SYG-1/Neph.(eLife, 2020-11-19) Qu, Zhongwei; Zhang, Albert; Yan, DongAs one of the most-studied receptors, Robo plays functions in many biological processes, and its functions highly depend on Slit, the ligand of Robo. Here we uncover a Slit-independent role of Robo in glial migration and show that neurons can release an extracellular fragment of Robo upon cleavage to attract glia during migration in Caenorhabditis elegans. Furthermore, we identified the conserved cell adhesion molecule SYG-1/Neph as a receptor for the cleaved extracellular Robo fragment to mediate glial migration and SYG-1/Neph functions through regulation of the WAVE complex. Our studies reveal a previously unknown Slit-independent function and regulatory mechanism of Robo and show that the cleaved extracellular fragment of Robo can function as a ligand for SYG-1/Neph to guide glial migration. As Robo, the cleaved region of Robo, and SYG-1/Neph are all highly conserved across the animal kingdom, our findings may present a conserved Slit-independent Robo mechanism during brain development.Item Open Access Robust test method for time-course microarray experiments.(BMC Bioinformatics, 2010-07-22) Sohn, Insuk; Owzar, Kouros; George, Stephen L; Kim, Sujong; Jung, Sin-HoBACKGROUND: In a time-course microarray experiment, the expression level for each gene is observed across a number of time-points in order to characterize the temporal trajectories of the gene-expression profiles. For many of these experiments, the scientific aim is the identification of genes for which the trajectories depend on an experimental or phenotypic factor. There is an extensive recent body of literature on statistical methodology for addressing this analytical problem. Most of the existing methods are based on estimating the time-course trajectories using parametric or non-parametric mean regression methods. The sensitivity of these regression methods to outliers, an issue that is well documented in the statistical literature, should be of concern when analyzing microarray data. RESULTS: In this paper, we propose a robust testing method for identifying genes whose expression time profiles depend on a factor. Furthermore, we propose a multiple testing procedure to adjust for multiplicity. CONCLUSIONS: Through an extensive simulation study, we will illustrate the performance of our method. Finally, we will report the results from applying our method to a case study and discussing potential extensions.Item Open Access Role of Mitochondrial Dynamics and Autophagy in Removal of Helix-Distorting Mitochondrial DNA Damage(2012) Bess, Amanda SmithMitochondria are the primary energy producers of the cell and play key roles in cellular signaling, apoptosis and reactive oxygen species (ROS) production. Mitochondria are the only organelles that contain their own genome which encodes for a small subset of electron transport chain (ETC) proteins as well as the necessary tRNAs and ribosomal subunits to translate these proteins. Over 300 pathogenic mitochondrial DNA (mtDNA) mutations have been shown to cause a number of mitochondrial diseases emphasizing the importance of mtDNA maintenance and integrity to human health. Additionally, mitochondrial dysfunction and mtDNA instability are linked to many wide-spread diseases associated with aging including cancer and neurodegeneration. Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mtDNA by important environmental genotoxins including polycyclic aromatic hydrocarbons, ultraviolet C radiation (UVC) and mycotoxins. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. Degradation of mitochondria and mtDNA is carried out by autophagy. Autophagy is protective against cell stress and apoptosis resulting from exposure to mitochondrial toxicants suggesting that it plays an important role in removal of unstable mitochondria that can serve as a source of ROS or initiate apoptotic cell death. Furthermore, dysfunctional mitochondria can be specifically targeted for degradation by the more specific process of mitophagy influenced in part by the processes of mitochondrial dynamics (i.e., fusion and fission).
The goals of this dissertation were to investigate the long-term fate of helix-distorting mtDNA damage and determine the significance of autophagy and mitochondrial dynamics in removal of and recovery from persistent mtDNA damage. Removal of irreparable mtDNA damage and the necessity of autophagy, mitophagy, fusion and fission genes in removal of this damage were examined using genetic approaches in adult Caenorhabditis elegans. In order to investigate the significance of autophagy, fusion and fission genes in recovery from mtDNA damage-induced mitochondrial dysfunction in vivo, an experimental method was developed to specifically induce persistent mtDNA damage and mitochondrial dysfunction without persistent nDNA damage in developing C. elegans. Additionally, the effect of persistent helix-distorting DNA damage on mitochondrial morphology, mitochondrial function and autophagy was investigated in C. elegans and in mammalian cell culture. The rate and specificity of mitochondrial degradation was further examined in cell culture using live-cell fluorescence microscopy and transmission electron microscopy.
Removal of UVC-induced mtDNA damage was detectable by 72 hours in C. elegans and mammalian cell culture, and required mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. UVC exposure induced autophagy with no detectable effect on mitochondrial morphology in both systems; mitochondrial function was inhibited in the C. elegans system but not in the cell culture system in which the degree of mtDNA damage induced was less. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.
Item Open Access Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans.(PLoS One, 2011-03-22) Baugh, L Ryan; Kurhanewicz, Nicole; Sternberg, Paul WInsulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.