Browsing by Subject "Calcineurin Inhibitors"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus.(Biochemical and biophysical research communications, 2020-05) Juvvadi, Praveen R; Bobay, Benjamin G; Gobeil, Sophie MC; Cole, D Christopher; Venters, Ronald A; Heitman, Joseph; Spicer, Leonard D; Steinbach, William JThe 12-kDa FK506-binding protein (FKBP12) is the target of the commonly used immunosuppressive drug FK506. The FKBP12-FK506 complex binds to calcineurin and inhibits its activity, leading to immunosuppression and preventing organ transplant rejection. Our recent characterization of crystal structures of FKBP12 proteins in pathogenic fungi revealed the involvement of the 80's loop residue (Pro90) in the active site pocket in self-substrate interaction providing novel evidence on FKBP12 dimerization in vivo. The 40's loop residues have also been shown to be involved in reversible dimerization of FKBP12 in the mammalian and yeast systems. To understand how FKBP12 dimerization affects FK506 binding and influences calcineurin function, we generated Aspergillus fumigatus FKBP12 mutations in the 40's and 50's loop (F37 M/L; W60V). Interestingly, the mutants exhibited variable FK506 susceptibility in vivo indicating differing dimer strengths. In comparison to the 80's loop P90G and V91C mutants, the F37 M/L and W60V mutants exhibited greater FK506 resistance, with the F37M mutation showing complete loss in calcineurin binding in vivo. Molecular dynamics and pulling simulations for each dimeric FKBP12 protein revealed a two-fold increase in dimer strength and significantly higher number of contacts for the F37M, F37L, and W60V mutations, further confirming their varying degree of impact on FK506 binding and calcineurin inhibition in vivo.Item Open Access Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents.(Nature communications, 2019-09) Juvvadi, Praveen R; Fox, David; Bobay, Benjamin G; Hoy, Michael J; Gobeil, Sophie MC; Venters, Ronald A; Chang, Zanetta; Lin, Jackie J; Averette, Anna Floyd; Cole, D Christopher; Barrington, Blake C; Wheaton, Joshua D; Ciofani, Maria; Trzoss, Michael; Li, Xiaoming; Lee, Soo Chan; Chen, Ying-Lien; Mutz, Mitchell; Spicer, Leonard D; Schumacher, Maria A; Heitman, Joseph; Steinbach, William JCalcineurin is important for fungal virulence and a potential antifungal target, but compounds targeting calcineurin, such as FK506, are immunosuppressive. Here we report the crystal structures of calcineurin catalytic (CnA) and regulatory (CnB) subunits complexed with FK506 and the FK506-binding protein (FKBP12) from human fungal pathogens (Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Coccidioides immitis). Fungal calcineurin complexes are similar to the mammalian complex, but comparison of fungal and human FKBP12 (hFKBP12) reveals conformational differences in the 40s and 80s loops. NMR analysis, molecular dynamic simulations, and mutations of the A. fumigatus CnA/CnB-FK506-FKBP12-complex identify a Phe88 residue, not conserved in hFKBP12, as critical for binding and inhibition of fungal calcineurin. These differences enable us to develop a less immunosuppressive FK506 analog, APX879, with an acetohydrazine substitution of the C22-carbonyl of FK506. APX879 exhibits reduced immunosuppressive activity and retains broad-spectrum antifungal activity and efficacy in a murine model of invasive fungal infection.Item Open Access Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs.(mBio, 2021-12) Gobeil, Sophie M-C; Bobay, Benjamin G; Juvvadi, Praveen R; Cole, D Christopher; Heitman, Joseph; Steinbach, William J; Venters, Ronald A; Spicer, Leonard DCalcineurin is a critical enzyme in fungal pathogenesis and antifungal drug tolerance and, therefore, an attractive antifungal target. Current clinically accessible calcineurin inhibitors, such as FK506, are immunosuppressive to humans, so exploiting calcineurin inhibition as an antifungal strategy necessitates fungal specificity in order to avoid inhibiting the human pathway. Harnessing fungal calcineurin-inhibitor crystal structures, we recently developed a less immunosuppressive FK506 analog, APX879, with broad-spectrum antifungal activity and demonstrable efficacy in a murine model of invasive fungal infection. Our overarching goal is to better understand, at a molecular level, the interaction determinants of the human and fungal FK506-binding proteins (FKBP12) required for calcineurin inhibition in order to guide the design of fungus-selective, nonimmunosuppressive FK506 analogs. To this end, we characterized high-resolution structures of the Mucor circinelloides FKBP12 bound to FK506 and of the Aspergillus fumigatus, M. circinelloides, and human FKBP12 proteins bound to the FK506 analog APX879, which exhibits enhanced selectivity for fungal pathogens. Combining structural, genetic, and biophysical methodologies with molecular dynamics simulations, we identify critical variations in these structurally similar FKBP12-ligand complexes. The work presented here, aimed at the rational design of more effective calcineurin inhibitors, indeed suggests that modifications to the APX879 scaffold centered around the C15, C16, C18, C36, and C37 positions provide the potential to significantly enhance fungal selectivity. IMPORTANCE Invasive fungal infections are a leading cause of death in the immunocompromised patient population. The rise in drug resistance to current antifungals highlights the urgent need to develop more efficacious and highly selective agents. Numerous investigations of major fungal pathogens have confirmed the critical role of the calcineurin pathway for fungal virulence, making it an attractive target for antifungal development. Although FK506 inhibits calcineurin, it is immunosuppressive in humans and cannot be used as an antifungal. By combining structural, genetic, biophysical, and in silico methodologies, we pinpoint regions of the FK506 scaffold and a less immunosuppressive analog, APX879, centered around the C15 to C18 and C36 to C37 positions that could be altered with selective extensions and/or deletions to enhance fungal selectivity. This work represents a significant advancement toward realizing calcineurin as a viable target for antifungal drug discovery.Item Open Access Structure-Guided Synthesis of FK506 and FK520 Analogs with Increased Selectivity Exhibit In Vivo Therapeutic Efficacy against Cryptococcus.(mBio, 2022-06) Hoy, Michael J; Park, Eunchong; Lee, Hyunji; Lim, Won Young; Cole, D Christopher; DeBouver, Nicholas D; Bobay, Benjamin G; Pierce, Phillip G; Fox, David; Ciofani, Maria; Juvvadi, Praveen R; Steinbach, William; Hong, Jiyong; Heitman, JosephCalcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.