Browsing by Subject "Capsid Proteins"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A TGF-β1 genetic variant at the miRNA187 binding site significantly modifies risk of HPV16-associated oropharyngeal cancer.(International journal of cancer, 2018-09) Tao, Ye; Sturgis, Erich M; Huang, Zhigang; Sun, Yan; Dahlstrom, Kristina R; Wei, Qingyi; Li, GuojunTGF-β1rs1982073 polymorphism at the miRNA-187 binding site may alter TGF-β1 expression and function, and thereby this polymorphism (genotype CT/CC) increases cancer susceptibility. HPV16 L1 seropositivity is associated with the risk of oral squamous cell carcinoma (OSCC), including oropharyngeal squamous cell carcinoma (OPSCC) and oral cavity squamous cell carcinoma (OCSCC). Thus, we hypothesized that TGF-β1rs1982073 polymorphism at the miRNA-187 binding site combined with HPV16 L1 seropositivity may have a joint effect on OSCC susceptibility. We determined the genotypes of TGF-β1rs1982073 and HPV16 status in 325 OSCC subjects and 335 cancer-free controls in the non-Hispanic white population, and used logistic regression models to evaluate the joint effects on OSCC susceptibility. TGF-β1rs1982073 polymorphism (CT/CC genotype) combined with HPV16 L1 seropositivity increased the risk of OSCC via joint effects, particularly in OPSCC subjects who were never-smokers (OR, 165.9; 95% CI, 28.6-960.4) or never-drinkers (OR, 196.0; 95% CI, 28.2-1,000.0), respectively. Younger subjects had a higher risk of OPSCC than older subjects (OR, 23.5; 95% CI, 6.3-87.0 vs. OR, 6.0; 95% CI, 1.7-17.9, respectively). The significant associations between this polymorphism and HPV16-associated OSCC and OPSCC were also observed. However, OCSCC subjects did not have similar results. Our findings suggest that the joint effects of TGF-β1rs1982073 and HPV16 L1 seropositivity can increase risk of HPV16-associated oral cancer, particularly in OPSCC subjects who are never-smokers, never-drinkers and young. This result may help us understand the tumorigenesis process and improve early detection, which are critical for prevention and intervention strategies. However, larger studies are needed to validate our findings.Item Open Access Anti-HIV Potential of Beesioside I Derivatives as Maturation Inhibitors: Synthesis, 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations.(International journal of molecular sciences, 2023-01) Zhao, Zixuan; Ma, Yinghong; Li, Xiangyuan; Morris-Natschke, Susan L; Sun, Zhaocui; Sun, Zhonghao; Ma, Guoxu; Dong, Zhengqi; Zhao, Xiaohong; Yang, Meihua; Xu, Xudong; Lee, Kuohsiung; Wu, Haifeng; Chen, ChinhoHIV-1 maturation is the final step in the retroviral lifecycle that is regulated by the proteolytic cleavage of the Gag precursor protein. As a first-in-class HIV-1 maturation inhibitor (MI), bevirimat blocks virion maturation by disrupting capsid-spacer peptide 1 (CA-SP1) cleavage, which acts as the target of MIs. Previous alterations of beesioside I (1) produced (20S,24S)-15ꞵ,16ꞵ-diacetoxy-18,24; 20,24-diepoxy-9,19-cyclolanostane-3ꞵ,25-diol 3-O-3',3'-dimethylsuccinate (3, DSC), showing similar anti-HIV potency compared to bevirimat. To ascertain the binding modes of this derivative, further modification of compound 1 was conducted. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis combined with docking simulations and molecular dynamics (MD) were conducted. Five new derivatives were synthesized, among which compound 3b showed significant activity against HIV-1NL4-3 with an EC50 value of 0.28 µM. The developed 3D-QSAR model resulted in great predictive ability with training set (r2 = 0.99, q2 = 0.55). Molecular docking studies were complementary to the 3D-QSAR analysis, showing that DSC was differently bound to CA-SP1 with higher affinity than that of bevirimat. MD studies revealed that the complex of the ligand and the protein was stable, with root mean square deviation (RMSD) values <2.5 Å. The above results provided valuable insights into the potential of DSC as a prototype to develop new antiviral agents.