Browsing by Subject "Carbon Cycle"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Above-ground biomass and structure of 260 African tropical forests.(Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2013-01) Lewis, Simon L; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje MF; Phillips, Oliver L; Affum-Baffoe, Kofi; Baker, Timothy R; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle EN; Fauset, Sophie; Feldpausch, Ted R; Foli, Ernest G; Gillet, Jean-François; Hamilton, Alan C; Harris, David J; Hart, Terese B; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel E; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R; Ojo, Lucas; Peh, Kelvin S-H; Pickavance, Georgia; Poulsen, John R; Reitsma, Jan M; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E; Talbot, Joey; Taplin, James RD; Taylor, David; Thomas, Sean C; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee JT; Willcock, Simon; Woell, Hannsjorg; Zemagho, LiseWe report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.Item Open Access Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes?(PLoS One, 2013) Hartman, Wyatt H; Richardson, Curtis JBACKGROUND: Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils. METHODOLOGY/ PRINCIPAL FINDINGS: To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability. CONCLUSIONS/ SIGNIFICANCE: Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.Item Open Access Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.(The New phytologist, 2014-05) Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard JWe analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.Item Open Access Long-term thermal sensitivity of Earth's tropical forests.(Science (New York, N.Y.), 2020-05-21) Sullivan, Martin JP; Lewis, Simon L; Affum-Baffoe, Kofi; Castilho, Carolina; Costa, Flávia; Sanchez, Aida Cuni; Ewango, Corneille EN; Hubau, Wannes; Marimon, Beatriz; Monteagudo-Mendoza, Abel; Qie, Lan; Sonké, Bonaventure; Martinez, Rodolfo Vasquez; Baker, Timothy R; Brienen, Roel JW; Feldpausch, Ted R; Galbraith, David; Gloor, Manuel; Malhi, Yadvinder; Aiba, Shin-Ichiro; Alexiades, Miguel N; Almeida, Everton C; de Oliveira, Edmar Almeida; Dávila, Esteban Álvarez; Loayza, Patricia Alvarez; Andrade, Ana; Vieira, Simone Aparecida; Aragão, Luiz EOC; Araujo-Murakami, Alejandro; Arets, Eric JMM; Arroyo, Luzmila; Ashton, Peter; Aymard C, Gerardo; Baccaro, Fabrício B; Banin, Lindsay F; Baraloto, Christopher; Camargo, Plínio Barbosa; Barlow, Jos; Barroso, Jorcely; Bastin, Jean-François; Batterman, Sarah A; Beeckman, Hans; Begne, Serge K; Bennett, Amy C; Berenguer, Erika; Berry, Nicholas; Blanc, Lilian; Boeckx, Pascal; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Bradford, Matt; Brearley, Francis Q; Brncic, Terry; Brown, Foster; Burban, Benoit; Camargo, José Luís; Castro, Wendeson; Céron, Carlos; Ribeiro, Sabina Cerruto; Moscoso, Victor Chama; Chave, Jerôme; Chezeaux, Eric; Clark, Connie J; de Souza, Fernanda Coelho; Collins, Murray; Comiskey, James A; Valverde, Fernando Cornejo; Medina, Massiel Corrales; da Costa, Lola; Dančák, Martin; Dargie, Greta C; Davies, Stuart; Cardozo, Nallaret Davila; de Haulleville, Thales; de Medeiros, Marcelo Brilhante; Del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Doucet, Jean-Louis; Dourdain, Aurélie; Droissart, Vincent; Duque, Luisa Fernanda; Ekoungoulou, Romeo; Elias, Fernando; Erwin, Terry; Esquivel-Muelbert, Adriane; Fauset, Sophie; Ferreira, Joice; Llampazo, Gerardo Flores; Foli, Ernest; Ford, Andrew; Gilpin, Martin; Hall, Jefferson S; Hamer, Keith C; Hamilton, Alan C; Harris, David J; Hart, Terese B; Hédl, Radim; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Hladik, Annette; Coronado, Eurídice Honorio; Huamantupa-Chuquimaco, Isau; Huasco, Walter Huaraca; Jeffery, Kathryn J; Jimenez-Rojas, Eliana; Kalamandeen, Michelle; Djuikouo, Marie Noël Kamdem; Kearsley, Elizabeth; Umetsu, Ricardo Keichi; Kho, Lip Khoon; Killeen, Timothy; Kitayama, Kanehiro; Klitgaard, Bente; Koch, Alexander; Labrière, Nicolas; Laurance, William; Laurance, Susan; Leal, Miguel E; Levesley, Aurora; Lima, Adriano JN; Lisingo, Janvier; Lopes, Aline P; Lopez-Gonzalez, Gabriela; Lovejoy, Tom; Lovett, Jon C; Lowe, Richard; Magnusson, William E; Malumbres-Olarte, Jagoba; Manzatto, Ângelo Gilberto; Marimon, Ben Hur; Marshall, Andrew R; Marthews, Toby; de Almeida Reis, Simone Matias; Maycock, Colin; Melgaço, Karina; Mendoza, Casimiro; Metali, Faizah; Mihindou, Vianet; Milliken, William; Mitchard, Edward TA; Morandi, Paulo S; Mossman, Hannah L; Nagy, Laszlo; Nascimento, Henrique; Neill, David; Nilus, Reuben; Vargas, Percy Núñez; Palacios, Walter; Camacho, Nadir Pallqui; Peacock, Julie; Pendry, Colin; Peñuela Mora, Maria Cristina; Pickavance, Georgia C; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Poorter, Lourens; Poulsen, John R; Poulsen, Axel Dalberg; Preziosi, Richard; Prieto, Adriana; Primack, Richard B; Ramírez-Angulo, Hirma; Reitsma, Jan; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; de Sousa, Thaiane Rodrigues; Bayona, Lily Rodriguez; Roopsind, Anand; Rudas, Agustín; Rutishauser, Ervan; Abu Salim, Kamariah; Salomão, Rafael P; Schietti, Juliana; Sheil, Douglas; Silva, Richarlly C; Espejo, Javier Silva; Valeria, Camila Silva; Silveira, Marcos; Simo-Droissart, Murielle; Simon, Marcelo Fragomeni; Singh, James; Soto Shareva, Yahn Carlos; Stahl, Clement; Stropp, Juliana; Sukri, Rahayu; Sunderland, Terry; Svátek, Martin; Swaine, Michael D; Swamy, Varun; Taedoumg, Hermann; Talbot, Joey; Taplin, James; Taylor, David; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Thomas, Sean C; Torres-Lezama, Armando; Umunay, Peter; Gamarra, Luis Valenzuela; van der Heijden, Geertje; van der Hout, Peter; van der Meer, Peter; van Nieuwstadt, Mark; Verbeeck, Hans; Vernimmen, Ronald; Vicentini, Alberto; Vieira, Ima Célia Guimarães; Torre, Emilio Vilanova; Vleminckx, Jason; Vos, Vincent; Wang, Ophelia; White, Lee JT; Willcock, Simon; Woods, John T; Wortel, Verginia; Young, Kenneth; Zagt, Roderick; Zemagho, Lise; Zuidema, Pieter A; Zwerts, Joeri A; Phillips, Oliver LThe sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.Item Open Access Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.(Global change biology, 2020-07) Flanagan, Neal E; Wang, Hongjun; Winton, Scott; Richardson, Curtis JWorldwide, regularly recurring wildfires shape many peatland ecosystems to the extent that fire-adapted species often dominate plant communities, suggesting that wildfire is an integral part of peatland ecology rather than an anomaly. The most destructive blazes are smoldering fires that are usually initiated in periods of drought and can combust entire peatland carbon stores. However, peatland wildfires more typically occur as low-severity surface burns that arise in the dormant season when vegetation is desiccated, and soil moisture is high. In such low-severity fires, surface layers experience flash heating, but there is little loss of underlying peat to combustion. This study examines the potential importance of such processes in several peatlands that span a gradient from hemiboreal to tropical ecozones and experience a wide range of fire return intervals. We show that low-severity fires can increase the pool of stable soil carbon by thermally altering the chemistry of soil organic matter (SOM), thereby reducing rates of microbial respiration. Using X-ray photoelectron spectroscopy and Fourier transform infrared, we demonstrate that low-severity fires significantly increase the degree of carbon condensation and aromatization of SOM functional groups, particularly on the surface of peat aggregates. Laboratory incubations show lower CO2 emissions from peat subjected to low-severity fire and predict lower cumulative CO2 emissions from burned peat after 1-3 years. Also, low-severity fires reduce the temperature sensitivity (Q10 ) of peat, indicating that these fires can inhibit microbial access to SOM. The increased stability of thermally altered SOM may allow a greater proportion of organic matter to survive vertical migration into saturated and anaerobic zones of peatlands where environmental conditions physiochemically protect carbon stores from decomposition for thousands of years. Thus, across latitudes, low-severity fire is an overlooked factor influencing carbon cycling in peatlands, which is relevant to global carbon budgets as climate change alters fire regimes worldwide.Item Open Access Resistance of African tropical forests to an extreme climate anomaly.(Proceedings of the National Academy of Sciences of the United States of America, 2021-05) Bennett, Amy C; Dargie, Greta C; Cuni-Sanchez, Aida; Tshibamba Mukendi, John; Hubau, Wannes; Mukinzi, Jacques M; Phillips, Oliver L; Malhi, Yadvinder; Sullivan, Martin JP; Cooper, Declan LM; Adu-Bredu, Stephen; Affum-Baffoe, Kofi; Amani, Christian A; Banin, Lindsay F; Beeckman, Hans; Begne, Serge K; Bocko, Yannick E; Boeckx, Pascal; Bogaert, Jan; Brncic, Terry; Chezeaux, Eric; Clark, Connie J; Daniels, Armandu K; de Haulleville, Thales; Djuikouo Kamdem, Marie-Noël; Doucet, Jean-Louis; Evouna Ondo, Fidèle; Ewango, Corneille EN; Feldpausch, Ted R; Foli, Ernest G; Gonmadje, Christelle; Hall, Jefferson S; Hardy, Olivier J; Harris, David J; Ifo, Suspense A; Jeffery, Kathryn J; Kearsley, Elizabeth; Leal, Miguel; Levesley, Aurora; Makana, Jean-Remy; Mbayu Lukasu, Faustin; Medjibe, Vincent P; Mihindu, Vianet; Moore, Sam; Nssi Begone, Natacha; Pickavance, Georgia C; Poulsen, John R; Reitsma, Jan; Sonké, Bonaventure; Sunderland, Terry CH; Taedoumg, Hermann; Talbot, Joey; Tuagben, Darlington S; Umunay, Peter M; Verbeeck, Hans; Vleminckx, Jason; White, Lee JT; Woell, Hannsjoerg; Woods, John T; Zemagho, Lise; Lewis, Simon LThe responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.Item Open Access The Anthropocene is functionally and stratigraphically distinct from the Holocene.(Science (New York, N.Y.), 2016-01) Waters, Colin N; Zalasiewicz, Jan; Summerhayes, Colin; Barnosky, Anthony D; Poirier, Clément; Gałuszka, Agnieszka; Cearreta, Alejandro; Edgeworth, Matt; Ellis, Erle C; Ellis, Michael; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, JR; Richter, Daniel deB; Steffen, Will; Syvitski, James; Vidas, Davor; Wagreich, Michael; Williams, Mark; Zhisheng, An; Grinevald, Jacques; Odada, Eric; Oreskes, Naomi; Wolfe, Alexander PHuman activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs.