Browsing by Subject "Carbon storage"
- Results Per Page
- Sort Options
Item Open Access Carbon Capture and Storage in the United States: An Integrated Analysis of Policy, Permitting, and Market Viability(2025-04-16) Hyun, Jiwon; Schulman, EliAs the second-largest emitter of greenhouse gases globally, the U.S. released 4,911 million metric tons of CO₂ into the atmosphere in 2023. Industry, accounting for 23% of the total direct emissions, is heavily dependent on fossil fuels and considered a hard-to-abate sector. Our project assesses opportunities to scale Carbon Capture and Storage (CCS) technology, focusing on states with favorable geological conditions and significant emissions reduction potential. We reviewed state and federal policies supporting CCS, analyzed permitting requirements, and identified major industrial emitters suited for CCS. We developed a framework to evaluate and prioritize industrial emitters, and delivered targeted recommendations for stakeholder engagement, including guidelines for interactions with policymakers, federal agencies, industry leaders, and local communities. This comprehensive approach aims to facilitate accelerated industrial decarbonization through wider CCS adoption.Item Open Access Ecosystem Service Analysis of Duke Forest(2022-04-22) Hayashi, Shouta; Horrigan, EamonOur team was tasked with evaluating the quantitative and monetary value of ecosystem services offered by the Duke Forest. Our client, the Duke Forest, manages and actively harvests 7,100 acres of timberlands used for research, education, and recreation by Duke University and the broader community. The overall purpose of assessing these services is to communicate the importance of the Duke Forest and offer implications for resource management. The term “ecosystem service” refers to benefits humans obtain from nature, and it is categorized into four different services; provisioning service; regulating service; supporting service; cultural service. Based on the client’s requests, we analyzed a subset of ecosystem services provided by the Duke Forest – carbon storage and sequestration, which have an important implication for climate change mitigation, and nutrient and sediment retention, which contribute to downstream water quality improvement. For spatial analysis of the focal ecosystem services, we used the InVEST suite of models, developed by the Natural Capital Project at Stanford University. We used the InVEST Carbon Storage & Sequestration model to spatially assess carbon storage and sequestration in the Duke Forest. For the land cover/ land use data input, we used spatial forest class and age data provided by the client. We referred to a USDA study to estimate carbon storage for the different forest types and age classes in the spatial data input and to populate the carbon pool table, another input of the InVEST carbon model. The monetary values of carbon storage and sequestration were estimated with the average carbon credit value for forestry projects from the World Bank, as well as with two domestic markets: the California Cap and Trade (CaT) and Regional Greenhouse Gas Initiative (RGGI), a regional northeastern US market. For assessment of water quality improvement, we ran the InVEST Nutrient Delivery Ratio (NDR) and Sediment Delivery Ratio (SDR) models to estimate phosphorus, nitrogen, and sediment export across four 10-digit HUC watersheds which Duke Forest occupies. Model calculations are determined by hydrological modelling, as well as biophysical statistics on a variety of land use/land cover classes. SDR results were used to produce a monetary estimation of Duke Forest’s contribution to sediment retention using estimates of Neuse River water treatment facility cost savings from reductions in turbidity. InVEST Carbon modelling estimated a total of 543,000 tons of carbon being stored across all Duke Forest divisions at an average of 80 tons per acre. The highest storage rates were observed in the Oosting Natural Area at 94 tons per acre and the lowest storage rates were seen in the Hillsboro division at 71 tons per acre. Using the value of carbon offset projects from terrestrial forests globally, this total storage is estimated to be worth over $15 million in value. In terms of domestic carbon offset markets across all projects, this value is estimated to be even greater: ranging from $17.3 to 35.8 million. Our future projections of carbon for the next 50 years revealed an estimate of 2,000 tons being stored yearly, equaling about $56,000 in monetary value using the global estimate for forestry offset projects. Results from NDR and SDR indicated Duke Forest’s contribution to downstream water quality protection and improvement. NDR estimated nutrient export rate in the Duke Forest is significantly lower than the watershed average. Average nitrogen export values in the Duke Forest in each of the four watersheds were lower than the average value in the watersheds by 25.7% - 44.7%. Mean phosphorus export values in the Duke Forest were lower than the watersheds by 67.3% - 83.1%. Similarly, SDR estimated sediment export rate in the Duke Forest significantly lower than the watersheds, by 78.8% ~ 98.4%. The monetary value of sediment retention based on turbidity reduction was estimated to be worth $43,000 and $113,000 annually in two different alternative land use scenarios. The greatest annual value was found in the B Everett Jordan Lake – New Hope River basin, where Duke Forest’s sediment buffering was valued at $26,000 and $50,000 in the two scenarios. For communication of significance and key results of this project to a broader audience, we developed a StoryMap on ArcGIS Oline. This StoryMap includes a brief description of the Duke Forest, an introductory explanation of ecosystem services, and key results from our analysis. It uses plain language and visual materials so audiences without a strong background can become interested in and grasp the benefits the Duke Forest provides the larger region. Future work on ecosystem service analysis in Duke Forest should focus on collecting accurate field data to refine the biophysical statistics which drive all the models we ran, rather than using values found in the literature. In addition, assessment of other ecosystem services offered by the Duke Forest would complement the results of this analysis. Final recommendations for the client include conservatively managing older stands with high carbon stocks, tracking opportunities to become involved in carbon offsets, and mitigating erosion during timber harvests.Item Open Access EVALUATING ECOSYSTEM SERVICES IN EASTERN TROPICAL PACIFIC MANGROVE SYSTEMS(2018-04-27) Navarro, Vanessa; Fan, JianingAlthough their total area constitutes only a small percentage of global tropical forests, mangroves supply a wide range of goods and services that benefit people, flora and fauna. They protect coastlines from the impact of storms, provide habitat for numerous fish species, improve water quality and even store carbon, thereby alleviating the effects of global climate change. And yet, despite offering all of these benefits, mangrove systems are rapidly shrinking worldwide. To reverse this trend, many studies have attempted to place economic values on the ecosystem services that mangroves provide. In this report, we focus on the mangrove forests of the Eastern Tropical Pacific Seascape (ETPS), which includes the countries of Ecuador, Panama, Costa Rica and Colombia. Through a meta-regression of mangrove ecosystem service valuation studies and by utilizing the MangroveCarbon toolbox, we aim to determine the monetary values of the mangrove ecosystem services in this region, and to investigate the factors that most influence those values. The hope is that our analyses will better inform future conservation efforts in the ETPS.Item Open Access Impacts of Geological Variability on Carbon Storage Potential(2011) Eccles, Jordan KaelinThe changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination of issues with onshore storage in geological media leads us to begin to evaluate offshore storage potential. By considering the temperature and pressure regimes at the seafloor, we locate and quantify marine strata that has "self-sealing" properties, a storage option that we find is plentiful off the coasts of the United States. We conclude that further research into transport optimization that takes into account the true variation in geological media is necessary to determine the distribution of costs for carbon capture and storage to permit the full evaluation of CCS as a mitigation option.