Browsing by Subject "Carcinogenesis"
Results Per Page
Sort Options
Item Open Access Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude.(Clinical epigenetics, 2023-09) Kadalayil, Latha; Alam, Md Zahangir; White, Cory Haley; Ghantous, Akram; Walton, Esther; Gruzieva, Olena; Merid, Simon Kebede; Kumar, Ashish; Roy, Ritu P; Solomon, Olivia; Huen, Karen; Eskenazi, Brenda; Rzehak, Peter; Grote, Veit; Langhendries, Jean-Paul; Verduci, Elvira; Ferre, Natalia; Gruszfeld, Darek; Gao, Lu; Guan, Weihua; Zeng, Xuehuo; Schisterman, Enrique F; Dou, John F; Bakulski, Kelly M; Feinberg, Jason I; Soomro, Munawar Hussain; Pesce, Giancarlo; Baiz, Nour; Isaevska, Elena; Plusquin, Michelle; Vafeiadi, Marina; Roumeliotaki, Theano; Langie, Sabine AS; Standaert, Arnout; Allard, Catherine; Perron, Patrice; Bouchard, Luigi; van Meel, Evelien R; Felix, Janine F; Jaddoe, Vincent WV; Yousefi, Paul D; Ramlau-Hansen, Cecilia H; Relton, Caroline L; Tobi, Elmar W; Starling, Anne P; Yang, Ivana V; Llambrich, Maria; Santorelli, Gillian; Lepeule, Johanna; Salas, Lucas A; Bustamante, Mariona; Ewart, Susan L; Zhang, Hongmei; Karmaus, Wilfried; Röder, Stefan; Zenclussen, Ana Claudia; Jin, Jianping; Nystad, Wenche; Page, Christian M; Magnus, Maria; Jima, Dereje D; Hoyo, Cathrine; Maguire, Rachel L; Kvist, Tuomas; Czamara, Darina; Räikkönen, Katri; Gong, Tong; Ullemar, Vilhelmina; Rifas-Shiman, Sheryl L; Oken, Emily; Almqvist, Catarina; Karlsson, Robert; Lahti, Jari; Murphy, Susan K; Håberg, Siri E; London, Stephanie; Herberth, Gunda; Arshad, Hasan; Sunyer, Jordi; Grazuleviciene, Regina; Dabelea, Dana; Steegers-Theunissen, Régine PM; Nohr, Ellen A; Sørensen, Thorkild IA; Duijts, Liesbeth; Hivert, Marie-France; Nelen, Vera; Popovic, Maja; Kogevinas, Manolis; Nawrot, Tim S; Herceg, Zdenko; Annesi-Maesano, Isabella; Fallin, M Daniele; Yeung, Edwina; Breton, Carrie V; Koletzko, Berthold; Holland, Nina; Wiemels, Joseph L; Melén, Erik; Sharp, Gemma C; Silver, Matt J; Rezwan, Faisal I; Holloway, John WBackground
Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear.Methods
We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points.Results
We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N).Conclusions
In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.Item Open Access Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer.(Nucleic acids research, 2021-05) Xu, Chenxi; Tsai, Yi-Hsuan; Galbo, Phillip M; Gong, Weida; Storey, Aaron J; Xu, Yuemei; Byrum, Stephanie D; Xu, Lingfan; Whang, Young E; Parker, Joel S; Mackintosh, Samuel G; Edmondson, Ricky D; Tackett, Alan J; Huang, Jiaoti; Zheng, Deyou; Earp, H Shelton; Wang, Gang Greg; Cai, LingCastration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.Item Open Access Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance.(Nature medicine, 2017-05) Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, GeorgeThe progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.Item Open Access DOK2 inhibits EGFR-mutated lung adenocarcinoma.(PloS one, 2013-01) Berger, Alice H; Chen, Ming; Morotti, Alessandro; Janas, Justyna A; Niki, Masaru; Bronson, Roderick T; Taylor, Barry S; Ladanyi, Marc; Van Aelst, Linda; Politi, Katerina; Varmus, Harold E; Pandolfi, Pier PaoloSomatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma.Item Open Access EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis.(The Journal of clinical investigation, 2014-09) Feng, Haizhong; Lopez, Giselle Y; Kim, Chung Kwon; Alvarez, Angel; Duncan, Christopher G; Nishikawa, Ryo; Nagane, Motoo; Su, An-Jey A; Auron, Philip E; Hedberg, Matthew L; Wang, Lin; Raizer, Jeffery J; Kessler, John A; Parsa, Andrew T; Gao, Wei-Qiang; Kim, Sung-Hak; Minata, Mutsuko; Nakano, Ichiro; Grandis, Jennifer R; McLendon, Roger E; Bigner, Darell D; Lin, Hui-Kuan; Furnari, Frank B; Cavenee, Webster K; Hu, Bo; Yan, Hai; Cheng, Shi-YuanAberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.Item Open Access Elucidating the Mechanisms Underlying the Mutational Bias of RAS Genes in Cancer Using a Chemical Carcinogenesis Mouse Model(2020) Li, SiqiMissense oncogenic mutations in the RAS genes are found in around 20% of all human cancers, which are known to be tumorigenic. Despite scores of different oncogenic RAS mutations detected in human cancers, these mutations have distinct patterns, often with a specific set of mutations unique to each cancer type. As RAS mutations can initiate cancer, elucidating the mechanism underlying RAS mutation patterns could inform on the origin of cancer. While capturing the moment cancer begins is not tractable in humans, the process of establishing RAS mutation patterns is recapitulated in mice exposed to the environmental carcinogen urethane, which induces lung tumors driven by one specific Ras mutation. I therefore captured the mutation spectrum of Ras genes after urethane exposure, which revealed that this bias appeared to be a product of the mutagenic preference of the carcinogen as well as high Kras expression. However, when endogenous Kras expression was increased, this mutational bias was shifted to other mutations. I show that in this setting a p53-dependent selection for an optimal signaling level becomes the dominant factor in the bias towards a specific Kras mutation. Collectively, these findings suggest that a multifactorial process shapes the mutational spectrum of RAS genes in cancer.
Item Open Access Loss of tumor suppressor IGFBP4 drives epigenetic reprogramming in hepatic carcinogenesis.(Nucleic acids research, 2018-09) Lee, Ying-Ying; Mok, Myth Ts; Kang, Wei; Yang, Weiqin; Tang, Wenshu; Wu, Feng; Xu, Liangliang; Yan, Mingfei; Yu, Zhuo; Lee, Sau-Dan; Tong, Joanna HM; Cheung, Yue-Sun; Lai, Paul BS; Yu, Dae-Yeul; Wang, Qianben; Wong, Grace LH; Chan, Andrew M; Yip, Kevin Y; To, Ka-Fai; Cheng, Alfred SLGenomic sequencing of hepatocellular carcinoma (HCC) uncovers a paucity of actionable mutations, underscoring the necessity to exploit epigenetic vulnerabilities for therapeutics. In HCC, EZH2-mediated H3K27me3 represents a major oncogenic chromatin modification, but how it modulates the therapeutic vulnerability of signaling pathways remains unknown. Here, we show EZH2 acts antagonistically to AKT signaling in maintaining H3K27 methylome through epigenetic silencing of IGFBP4. ChIP-seq revealed enrichment of Ezh2/H3K27me3 at silenced loci in HBx-transgenic mouse-derived HCCs, including Igfbp4 whose down-regulation significantly correlated with EZH2 overexpression and poor survivals of HCC patients. Functional characterizations demonstrated potent growth- and invasion-suppressive functions of IGFBP4, which was associated with transcriptomic alterations leading to deregulation of multiple signaling pathways. Mechanistically, IGFBP4 stimulated AKT/EZH2 phosphorylation to abrogate H3K27me3-mediated silencing, forming a reciprocal feedback loop that suppressed core transcription factor networks (FOXA1/HNF1A/HNF4A/KLF9/NR1H4) for normal liver homeostasis. Consequently, the in vivo tumorigenicity of IGFBP4-silenced HCC cells was vulnerable to pharmacological inhibition of EZH2, but not AKT. Our study unveils chromatin regulation of a novel liver tumor suppressor IGFBP4, which constitutes an AKT-EZH2 reciprocal loop in driving H3K27me3-mediated epigenetic reprogramming. Defining the aberrant chromatin landscape of HCC sheds light into the mechanistic basis of effective EZH2-targeted inhibition.Item Open Access Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling.(The American journal of pathology, 2016-12) Shukla-Dave, Amita; Castillo-Martin, Mireia; Chen, Ming; Lobo, Jose; Gladoun, Nataliya; Collazo-Lorduy, Ana; Khan, Faisal M; Ponomarev, Vladimir; Yi, Zhengzi; Zhang, Weijia; Pandolfi, Pier P; Hricak, Hedvig; Cordon-Cardo, CarlosIncreased polyamine synthesis is known to play an important role in prostate cancer. We aimed to explore its functional significance in prostate tumor initiation and its link to androgen receptor (AR) signaling. For this purpose, we generated a new cell line derived from normal epithelial prostate cells (RWPE-1) with overexpression of ornithine decarboxylase (ODC) and used it for in vitro and in vivo experiments. We then comprehensively analyzed the expression of the main metabolic enzymes of the polyamine pathway and spermine abundance in 120 well-characterized cases of human prostate cancer and high-grade prostate intraepithelial neoplasia (HGPIN). Herein, we show that the ODC-overexpressing prostate cells underwent malignant transformation, revealing that ODC is sufficient for de novo tumor initiation in 94% of injected mice. This oncogenic capacity was acquired through alteration of critical signaling networks, including AR, EIF2, and mTOR/MAPK. RNA silencing experiments revealed the link between AR signaling and polyamine metabolism. Human prostate cancers consistently demonstrated up-regulation of the main polyamine enzymes analyzed (ODC, polyamine oxidase, and spermine synthase) and reduction of spermine. This phenotype was also dominant in HGPIN, rendering it a new biomarker of malignant transformation. In summary, we report that ODC plays a key role in prostate tumorigenesis and that the polyamine pathway is altered as early as HGPIN.Item Open Access Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma.(Acta Neuropathol Commun, 2014-10-21) Misuraca, Katherine L; Barton, Kelly L; Chung, Alexander; Diaz, Alexander K; Conway, Simon J; Corcoran, David L; Baker, Suzanne J; Becher, Oren JHigh-grade Brainstem Glioma (BSG), also known as Diffuse Intrinsic Pontine Glioma (DIPG), is an incurable pediatric brain cancer. Increasing evidence supports the existence of regional differences in gliomagenesis such that BSG is considered a distinct disease from glioma of the cerebral cortex (CG). In an effort to elucidate unique characteristics of BSG, we conducted expression analysis of mouse PDGF-B-driven BSG and CG initiated in Nestin progenitor cells and identified a short list of expression changes specific to the brainstem gliomagenesis process, including abnormal upregulation of paired box 3 (Pax3). In the neonatal mouse brain, Pax3 expression marks a subset of brainstem progenitor cells, while it is absent from the cerebral cortex, mirroring its regional expression in glioma. Ectopic expression of Pax3 in normal brainstem progenitors in vitro shows that Pax3 inhibits apoptosis. Pax3-induced inhibition of apoptosis is p53-dependent, however, and in the absence of p53, Pax3 promotes proliferation of brainstem progenitors. In vivo, Pax3 enhances PDGF-B-driven gliomagenesis by shortening tumor latency and increasing tumor penetrance and grade, in a region-specific manner, while loss of Pax3 function extends survival of PDGF-B-driven;p53-deficient BSG-bearing mice by 33%. Importantly, Pax3 is regionally expressed in human glioma as well, with high PAX3 mRNA characterizing 40% of human BSG, revealing a subset of tumors that significantly associates with PDGFRA alterations, amplifications of cell cycle regulatory genes, and is exclusive of ACVR1 mutations. Collectively, these data suggest that regional Pax3 expression not only marks a novel subset of BSG but also contributes to PDGF-B-induced brainstem gliomagenesis.Item Open Access Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway.(Science (New York, N.Y.), 2019-05) Lee, Yu-Ru; Chen, Ming; Lee, Jonathan D; Zhang, Jinfang; Lin, Shu-Yu; Fu, Tian-Min; Chen, Hao; Ishikawa, Tomoki; Chiang, Shang-Yin; Katon, Jesse; Zhang, Yang; Shulga, Yulia V; Bester, Assaf C; Fung, Jacqueline; Monteleone, Emanuele; Wan, Lixin; Shen, Chen; Hsu, Chih-Hung; Papa, Antonella; Clohessy, John G; Teruya-Feldstein, Julie; Jain, Suresh; Wu, Hao; Matesic, Lydia; Chen, Ruey-Hwa; Wei, Wenyi; Pandolfi, Pier PaoloActivation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.Item Open Access Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival.(Carcinogenesis, 2018-07) Freedman, Jennifer A; Wang, Yanru; Li, Xuechan; Liu, Hongliang; Moorman, Patricia G; George, Daniel J; Lee, Norman H; Hyslop, Terry; Wei, Qingyi; Patierno, Steven RProstate cancer (PCa) is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single-nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with PCa survival. SNPs within stemness-related genes were analyzed for association with overall survival of PCa in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with PCa survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of PCa and support a contribution of the stemness pathway to PCa patient outcome.Item Open Access The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.(Cancer discovery, 2017-04) Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, WenyiBRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APCFZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR.See related commentary by Zhang and Bollag, p. 356This article is highlighted in the In This Issue feature, p. 339.