Browsing by Subject "Cartilage, Articular"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Open Access Acetabular Paralabral Cyst: An Unusual Cause of Lower Extremity Pain and Paresthesia.(J Orthop Sports Phys Ther, 2016-01) Reiman, Michael P; Hash, Thomas W; Mather, Richard CItem Open Access Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice.(PLoS One, 2012) Christensen, Susan E; Coles, Jeffrey M; Zelenski, Nicole A; Furman, Bridgette D; Leddy, Holly A; Zauscher, Stefan; Bonaldo, Paolo; Guilak, FarshidMutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.Item Open Access Amino acid racemization reveals differential protein turnover in osteoarthritic articular and meniscal cartilages.(Arthritis Res Ther, 2009) Stabler, Thomas V; Byers, Samuel S; Zura, Robert D; Kraus, Virginia ByersINTRODUCTION: Certain amino acids within proteins have been reported to change from the L form to the D form over time. This process is known as racemization and is most likely to occur in long-lived low-turnover tissues such as normal cartilage. We hypothesized that diseased tissue, as found in an osteoarthritic (OA) joint, would have increased turnover reflected by a decrease in the racemized amino acid content. METHODS: Using high-performance liquid chromatography methods, we quantified the L and D forms of amino acids reported to racemize in vivo on a biological timescale: alanine, aspartate (Asp), asparagine (Asn), glutamate, glutamine, isoleucine, leucine (Leu), and serine (Ser). Furthermore, using a metabolically inactive control material (tooth dentin) and a control material with normal metabolism (normal articular cartilage), we developed an age adjustment in order to make inferences about the state of protein turnover in cartilage and meniscus. RESULTS: In the metabolically inactive control material (n = 25, ages 13 to 80 years) and the normal metabolizing control material (n = 19, ages 17 to 83 years), only Asp + Asn (Asx), Ser, and Leu showed a significant change (increase) in racemization with age (P < 0.01). The age-adjusted proportions of racemized to total amino acid (D/D+L expressed as a percentage of the control material) for Asx, Ser, and Leu when compared with the normal articular cartilage control were 97%, 74%, and 73% in OA meniscal cartilage and 97%, 70%, and 78% in OA articular cartilage. We also observed lower amino acid content in OA articular and meniscal cartilages compared with normal articular cartilage as well as a loss of total amino acids with age in the OA meniscal but not the OA articular cartilage. CONCLUSIONS: These data demonstrate comparable anabolic responses for non-lesioned OA articular cartilage and OA meniscal cartilage but an excess of catabolism over anabolism for the meniscal cartilage.Item Open Access Are Weightbearing Restrictions Required After Microfracture for Isolated Chondral Lesions of the Knee? A Review of the Basic Science and Clinical Literature.(Sports health, 2021-03) Jain, Deeptee; Belay, Elshaday S; Anderson, John A; Garrett, William E; Lau, Brian CContext
A strict rehabilitation protocol is traditionally followed after microfracture, including weightbearing restrictions for 2 to 6 weeks. However, such restrictions pose significant disability, especially in a patient population that is younger and more active.Evidence acquisition
An extensive literature review was performed through PubMed and Google Scholar of all studies through December 2018 related to microfracture, including biomechanical, basic science, and clinical studies. For inclusion, clinical studies had to report weightbearing status and outcomes with a minimum 12-month follow-up.Study design
Clinical review.Level of evidence
Level 3.Results
Review of biomechanical and biology studies suggest new forming repair tissue is protected from shear forces of knee joint loading by the cartilaginous margins of the defect. This margin acts as a shoulder to maintain axial height and allow for tissue remodeling up to at least 12 months after surgery, well beyond current weight bearing restriction trends. A retrospective case-control study showed that weightbearing status postoperatively had no effect on clinical outcomes in patients who underwent microfracture for small chondral (<2 mm2) defects. In fact, 1 survey showed that many orthopaedic surgeons currently do not restrict weightbearing after microfracture.Conclusion
This clinical literature review suggests that weightbearing restrictions may not be required after microfracture for isolated tibiofemoral chondral lesions of the knee.Strength of recommendation taxonomy
C.Item Metadata only Biomarkers and proteomic analysis of osteoarthritis.(Matrix Biol, 2014-10) Hsueh, Ming-Feng; Önnerfjord, Patrik; Kraus, Virginia ByersOur friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.Item Open Access Cartilage mechanics in the guinea pig model of osteoarthritis studied with an osmotic loading method.(Osteoarthritis and cartilage, 2004-05) Flahiff, Charlene M; Kraus, Virginia B; Huebner, Janet L; Setton, Lori ATo determine the material properties of articular cartilage in the Hartley guinea pig model of spontaneous osteoarthritis.Cartilage-bone samples from the medial femoral condyle and tibial plateau of 12 month-old guinea pig knees were subjected to osmotic loading. Site-matched swelling strains and fixed charge density values were used in a triphasic theoretical model for cartilage swelling to determine the modulus of the cartilage solid matrix. The degree of cartilage degeneration was assessed in adjacent tissue sections using a semi-quantitative histological grading scheme.Decreased values for both moduli and surface zone fixed charge density were associated with increasing grades of cartilage degeneration. Decreases in moduli reflect damage to the collagen matrix, which give rise to greater swelling strains.Histological evidence of cartilage degeneration was associated with impaired cartilage mechanics in the aging Hartley guinea pig.Item Open Access Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells.(International journal of molecular sciences, 2020-07) Twomey-Kozak, John; Desai, Salomi; Liu, Wenguang; Li, Neill Y; Lemme, Nicholas; Chen, Qian; Owens, Brett D; Jayasuriya, Chathuraka TChondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our primary objectives were (1) to determine whether DLX5 is a predictive biomarker of cellular hypertrophy in human osteoarthritic tissues; (2) To determine whether modulating DLX5 activity can regulate cell hypertrophy in mesenchymal stem/progenitor cells from marrow and cartilage. Whole transcriptome sequencing was performed to identify differences in the RNA expression profile between human-cartilage-derived mesenchymal progenitors (C-PCs) and bone-marrow-derived mesenchymal progenitors (BM-MSCs). Ingenuity Pathway Analysis (IPA) software was used to compare molecular pathways known to regulate hypertrophic terminal cell differentiation. RT-qPCR was used to measure DLX5 and hypertrophy marker COL10 in healthy human chondrocytes and OA chondrocytes. DLX5 was knocked down or overexpressed in BM-MSCs and C-PCs and RT-qPCR were used to measure the expression of hypertrophy/terminal differentiation markers following DLX5 modulation. Apoptotic cell activity was characterized by immunostaining for cleaved caspase 3/7. We demonstrate that DLX5 and downstream hypertrophy markers were significantly upregulated in BM-MSCs, relative to C-PCs. DLX5 and COL10 were also significantly upregulated in cells from OA knee joint tissues, relative to normal non-arthritic joint tissues. Knocking down DLX5 in BM-MSCs inhibited cell hypertrophy and apoptotic activity without attenuating their chondrogenic potential. Overexpression of DLX5 in C-PCs stimulated hypertrophy markers and increased apoptotic cell activity. Modulating DLX5 activity regulates cell hypertrophy and apoptosis in BM-MSCs and C-PCs. These findings suggest that DLX5 is a biomarker of OA changes in human knee joint tissues and confirms the DLX5 mechanism contributes to hypertrophy and apoptosis in BM-MSCs.Item Open Access Elucidating the Molecular Composition of Cartilage by Proteomics.(J Proteome Res, 2016-02-05) Hsueh, Ming-Feng; Khabut, Areej; Kjellström, Sven; Önnerfjord, Patrik; Kraus, Virginia ByersArticular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.Item Open Access Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering.(Tissue Eng Part A, 2010-04) Moutos, Franklin T; Guilak, FarshidArticular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.Item Open Access Human Cartilage-Derived Progenitors Resist Terminal Differentiation and Require CXCR4 Activation to Successfully Bridge Meniscus Tissue Tears.(Stem cells (Dayton, Ohio), 2019-01) Jayasuriya, Chathuraka T; Twomey-Kozak, John; Newberry, Jake; Desai, Salomi; Feltman, Peter; Franco, Jonathan R; Li, Neill; Terek, Richard; Ehrlich, Michael G; Owens, Brett DMeniscus injuries are among the most common orthopedic injuries. Tears in the inner one-third of the meniscus heal poorly and present a significant clinical challenge. In this study, we hypothesized that progenitor cells from healthy human articular cartilage (chondroprogenitor cells [C-PCs]) may be more suitable than bone-marrow mesenchymal stem cells (BM-MSCs) to mediate bridging and reintegration of fibrocartilage tissue tears in meniscus. C-PCs were isolated from healthy human articular cartilage based on their expression of mesenchymal stem/progenitor marker activated leukocyte cell adhesion molecule (ALCAM) (CD166). Our findings revealed that healthy human C-PCs are CD166+, CD90+, CD54+, CD106- cells with multilineage differentiation potential, and elevated basal expression of chondrogenesis marker SOX-9. We show that, similar to BM-MSCs, C-PCs are responsive to the chemokine stromal cell-derived factor-1 (SDF-1) and they can successfully migrate to the area of meniscal tissue damage promoting collagen bridging across inner meniscal tears. In contrast to BM-MSCs, C-PCs maintained reduced expression of cellular hypertrophy marker collagen X in monolayer culture and in an explant organ culture model of meniscus repair. Treatment of C-PCs with SDF-1/CXCR4 pathway inhibitor AMD3100 disrupted cell localization to area of injury and prevented meniscus tissue bridging thereby indicating that the SDF-1/CXCR4 axis is an important mediator of this repair process. This study suggests that C-PCs from healthy human cartilage may potentially be a useful tool for fibrocartilage tissue repair/regeneration because they resist cellular hypertrophy and mobilize in response to chemokine signaling. Stem Cells 2019;37:102-114.Item Open Access Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries.(Arthritis research & therapy, 2021-11) Kim-Wang, Sophia Y; Holt, Abigail G; McGowan, Alyssa M; Danyluk, Stephanie T; Goode, Adam P; Lau, Brian C; Toth, Alison P; Wittstein, Jocelyn R; DeFrate, Louis E; Yi, John S; McNulty, Amy LBackground
Anterior cruciate ligament (ACL) and meniscus tears are common knee injuries. Despite the high rate of post-traumatic osteoarthritis (PTOA) following these injuries, the contributing factors remain unclear. In this study, we characterized the immune cell profiles of normal and injured joints at the time of ACL and meniscal surgeries.Methods
Twenty-nine patients (14 meniscus-injured and 15 ACL-injured) undergoing ACL and/or meniscus surgery but with a normal contralateral knee were recruited. During surgery, synovial fluid was aspirated from both normal and injured knees. Synovial fluid cells were pelleted, washed, and stained with an antibody cocktail consisting of fluorescent antibodies for cell surface proteins. Analysis of immune cells in the synovial fluid was performed by polychromatic flow cytometry. A broad spectrum immune cell panel was used in the first 10 subjects. Based on these results, a T cell-specific panel was used in the subsequent 19 subjects.Results
Using the broad spectrum immune cell panel, we detected significantly more total viable cells and CD3 T cells in the injured compared to the paired normal knees. In addition, there were significantly more injured knees with T cells above a 500-cell threshold. Within the injured knees, CD4 and CD8 T cells were able to be differentiated into subsets. The frequency of total CD4 T cells was significantly different among injury types, but no statistical differences were detected among CD4 and CD8 T cell subsets by injury type.Conclusions
Our findings provide foundational data showing that ACL and meniscus injuries induce an immune cell-rich microenvironment that consists primarily of T cells with multiple T helper phenotypes. Future studies investigating the relationship between immune cells and joint degeneration may provide an enhanced understanding of the pathophysiology of PTOA following joint injury.Item Open Access Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4.(Arthritis Rheum, 2010-06) Coles, Jeffrey M; Zhang, Ling; Blum, Jason J; Warman, Matthew L; Jay, Gregory D; Guilak, Farshid; Zauscher, StefanOBJECTIVE: To assess the role of the glycoprotein PRG4 in joint lubrication and chondroprotection by measuring friction, stiffness, surface topography, and subsurface histology of the hip joints of Prg4(-/-) and wild-type (WT) mice. METHODS: Friction and elastic modulus were measured in cartilage from the femoral heads of Prg4(-/-) and WT mice ages 2, 4, 10, and 16 weeks using atomic force microscopy, and the surface microstructure was imaged. Histologic sections of each femoral head were stained and graded. RESULTS: Histologic analysis of the joints of Prg4(-/-) mice showed an enlarged, fragmented surface layer of variable thickness with Safranin O-positive formations sometimes present, a roughened underlying articular cartilage surface, and a progressive loss of pericellular proteoglycans. Friction was significantly higher on cartilage of Prg4(-/-) mice at age 16 weeks, but statistically significant differences in friction were not detected at younger ages. The elastic modulus of the cartilage was similar between cartilage surfaces of Prg4(-/-) and WT mice at young ages, but cartilage of WT mice showed increasing stiffness with age, with significantly higher moduli than cartilage of Prg4(-/-) mice at older ages. CONCLUSION: Deletion of the gene Prg4 results in significant structural and biomechanical changes in the articular cartilage with age, some of which are consistent with osteoarthritic degeneration. These findings suggest that PRG4 plays a significant role in preserving normal joint structure and function.Item Open Access Mechanobiology of the meniscus.(J Biomech, 2015-06-01) McNulty, Amy L; Guilak, FarshidThe meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus.Item Open Access Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate.(Arthritis Res Ther, 2009) Catterall, Jonathan B; Barr, Daniel; Bolognesi, Michael; Zura, Robert D; Kraus, Virginia BINTRODUCTION: Aging proteins undergo non-enzymatic post-translational modification, including isomerization and racemization. We hypothesized that cartilage with many long-lived components could accumulate non-enzymatically modified amino acids in the form of isomerized aspartate and that its liberation due to osteoarthritis (OA)-related cartilage degradation could reflect OA severity. METHODS: Articular cartilage and synovial fluid were obtained from 14 randomly selected total knee arthroplasty cases (56 to 79 years old) and non-arthritis cartilage from 8 trauma cases (51 to 83 years old). Paired lesional cartilage and non-lesioned OA cartilage were graded histologically using a modified Mankin system. Paired cartilage and synovial fluids were assayed for isomerized aspartate, phosphate-buffered saline/EDTA (ethylenediaminetetraacetic acid) extractable glycosaminoglycans, and total protein. Macroscopically normal non-lesioned OA cartilage was separated into superficial and deep regions when cartilage thickness was at least 3 mm (n = 6). RESULTS: Normalized to cartilage wet weight, normal cartilage and deep non-lesioned OA cartilage contained significantly (P < 0.05) more isomerized aspartate than superficial non-lesioned OA cartilage and lesioned cartilage. Synovial fluid isomerized aspartate correlated positively (R2 = 0.53, P = 0.02) and glycosaminoglycans correlated negatively (R2 = 0.42, P = 0.04) with histological OA lesion severity. Neither synovial fluid isomerized aspartate nor glycosaminoglycans nor total protein correlated with histological scores of non-lesioned areas. CONCLUSIONS: We show for the first time that human cartilage and synovial fluid contain measurable quantities of an isomerized amino acid and that synovial fluid concentrations of isomerized aspartate reflected severity of histological OA. Further assessment is warranted to identify the cartilage proteins containing this modification and to assess the functional consequences and biomarker applications of this analyte in OA.Item Open Access Posttraumatic osteoarthritis.(Clin Orthop Relat Res, 2004-06) Olson, SA; Marsh, JLItem Open Access Semi-quantitative MRI biomarkers of knee osteoarthritis progression in the FNIH biomarkers consortium cohort - Methodologic aspects and definition of change.(BMC musculoskeletal disorders, 2016-11-10) Roemer, Frank W; Guermazi, Ali; Collins, Jamie E; Losina, Elena; Nevitt, Michael C; Lynch, John A; Katz, Jeffrey N; Kwoh, C Kent; Kraus, Virginia B; Hunter, David JTo describe the scoring methodology and MRI assessments used to evaluate the cross-sectional features observed in cases and controls, to define change over time for different MRI features, and to report the extent of changes over a 24-month period in the Foundation for National Institutes of Health Osteoarthritis Biomarkers Consortium study nested within the larger Osteoarthritis Initiative (OAI) Study.We conducted a nested case-control study. Cases (n = 406) were knees having both radiographic and pain progression. Controls (n = 194) were knee osteoarthritis subjects who did not meet the case definition. Groups were matched for Kellgren-Lawrence grade and body mass index. MRIs were acquired using 3 T MRI systems and assessed using the semi-quantitative MOAKS system. MRIs were read at baseline and 24 months for cartilage damage, bone marrow lesions (BML), osteophytes, meniscal damage and extrusion, and Hoffa- and effusion-synovitis. We provide the definition and distribution of change in these biomarkers over time.Seventy-three percent of the cases had subregions with BML worsening (vs. 66 % in controls) (p = 0.102). Little change in osteophytes was seen over 24 months. Twenty-eight percent of cases and 10 % of controls had worsening in meniscal scores in at least one subregion (p < 0.001). Seventy-three percent of cases and 53 % of controls had at least one area with worsening in cartilage surface area (p < 0.001). More cases experienced worsening in Hoffa- and effusion synovitis than controls (17 % vs. 6 % (p < 0.001); 41 % vs. 18 % (p < 0.001), respectively).A wide range of MRI-detected structural pathologies was present in the FNIH cohort. More severe changes, especially for BMLs, cartilage and meniscal damage, were detected primarily among the case group suggesting that early changes in multiple structural domains are associated with radiographic worsening and symptomatic progression.Item Open Access Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage.(Proc Natl Acad Sci U S A, 2014-11-25) Lee, Whasil; Leddy, Holly A; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A; McNulty, Amy L; Wu, Jason; Beicker, Kellie N; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Guilak, Farshid; Liedtke, Wolfgang BDiarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.