Browsing by Subject "Caspase 8"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.(Proc Natl Acad Sci U S A, 2013-02-05) Kurokawa, Manabu; Ito, Takahiro; Yang, Chih-Sheng; Zhao, Chen; Macintyre, Andrew N; Rizzieri, David A; Rathmell, Jeffrey C; Deininger, Michael W; Reya, Tannishtha; Kornbluth, SallyIncreased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations.Item Open Access Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism.(Breast Cancer Res Treat, 2013-01) Allensworth, Jennifer L; Sauer, Scott J; Lyerly, H Kim; Morse, Michael A; Devi, Gayathri RX-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K (d) > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.