Browsing by Subject "Cell Line, Transformed"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Dusp3 and Psme3 are associated with murine susceptibility to Staphylococcus aureus infection and human sepsis.(PLoS Pathog, 2014-06) Yan, Qin; Sharma-Kuinkel, Batu K; Deshmukh, Hitesh; Tsalik, Ephraim L; Cyr, Derek D; Lucas, Joseph; Woods, Christopher W; Scott, William K; Sempowski, Gregory D; Thaden, Joshua T; Rude, Thomas H; Ahn, Sun Hee; Fowler, Vance GUsing A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.Item Open Access Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis.(Brain : a journal of neurology, 2011-02) Kirby, Janine; Ning, Ke; Ferraiuolo, Laura; Heath, Paul R; Ismail, Azza; Kuo, Su-Wei; Valori, Chiara F; Cox, Laura; Sharrack, Basil; Wharton, Stephen B; Ince, Paul G; Shaw, Pamela J; Azzouz, MimounGene expression profiling has been used previously with spinal cord homogenates and laser capture microdissected motor neurons to determine the mechanisms involved in neurodegeneration in amyotrophic lateral sclerosis. However, while cellular and animal model work has focused on superoxide dismutase 1-related amyotrophic lateral sclerosis, the transcriptional profile of human mutant superoxide dismutase 1 motor neurons has remained undiscovered. The aim of this study was to apply gene expression profiling to laser captured motor neurons from human superoxide dismutase 1-related amyotrophic lateral sclerosis and neurologically normal control cases, in order to determine those pathways dysregulated in human superoxide dismutase 1-related neurodegeneration and to establish potential pathways suitable for therapeutic intervention. Identified targets were then validated in cultured cell models using lentiviral vectors to manipulate the expression of key genes. Microarray analysis identified 1170 differentially expressed genes in spinal cord motor neurons from superoxide dismutase 1-related amyotrophic lateral sclerosis, compared with controls. These genes encoded for proteins in multiple functional categories, including those involved in cell survival and cell death. Further analysis determined that multiple genes involved in the phosphatidylinositol-3 kinase signalling cascade were differentially expressed in motor neurons that survived the disease process. Functional experiments in cultured cells and primary motor neurons demonstrate that manipulating this pathway by reducing the expression of a single upstream target, the negative phosphatidylinositol-3 kinase regulator phosphatase and tensin homology, promotes a marked pro-survival effect. Therefore, these data indicate that proteins in the phosphatidylinositol-3 kinase pathway could represent a target for therapeutic manipulation in motor neuron degeneration.Item Open Access Potentially functional polymorphisms in the CASP7 gene contribute to gastric adenocarcinoma susceptibility in an eastern Chinese population.(PloS one, 2013-01) Wang, Meng-Yun; Zhu, Mei-Ling; He, Jing; Shi, Ting-Yan; Li, Qiao-Xin; Wang, Ya-Nong; Li, Jin; Zhou, Xiao-Yan; Sun, Meng-Hong; Wang, Xiao-Feng; Yang, Ya-Jun; Wang, Jiu-Cun; Jin, Li; Wei, Qing-YiBACKGROUND: Caspase 7 (CASP7) is an important regulator and executioner in the apoptosis pathway and plays a crucial role in cancer development and progression. However, few studies have evaluated associations between functional single nucleotide polymorphisms (SNPs) in the 3' untranslational region (UTR) of CASP7 and risk of gastric cancer. METHODS: In a case-control study of 1117 patients with gastric cancer and 1146 cancer-free controls with frequency matching on age and sex, we genotyped four potentially functional SNPs (rs4353229T>C, rs10787498T>G, rs1127687G>A and rs12247479G>A) located in the microRNA binding sites of the CASP7 3' UTR by using Taqman assays and evaluated their associations with risk of gastric cancer by using logistic regression analyses as well as multifactorial dimension reduction (MDR) analysis. RESULTS: In the single-locus analysis, only the CASP7 rs4353229 TT genotype was associated with 0.83-fold decreased risk (95% confidence interval [CI] = 0.70-0.98) of gastric cancer under a recessive model, compared with the CT/CC genotypes. In the combined analysis of all four SNPs, we found that the risk of gastric cancer decreased by 19% in those carrying any of the risk genotypes (adjusted odds ratio = 0.81, 95% CI = 0.68-0.96), compared with those carrying zero risk genotypes, and this risk was more evident in subgroups of younger age (<59 years), females, non-smokers, non-drinkers and patients with non-gastric cardia adenocarcinoma. Further MDR analysis suggested some evidence of interactions between the combined genotypes and other risk factors for gastric cancer. CONCLUSIONS: Potentially functional CASP7 variants may contribute to risk of gastric cancer. Larger studies with different ethnic populations are warranted to validate our findings.Item Open Access Potentially functional polymorphisms in the ERCC2 gene and risk of esophageal squamous cell carcinoma in Chinese populations.(Scientific reports, 2014-01) Zhu, Mei-Ling; He, Jing; Wang, MengYun; Sun, Meng-Hong; Jin, Li; Wang, Xiaofeng; Yang, Ya-Jun; Wang, Jiu-Cun; Zheng, Leizhen; Xiang, Jia-Qing; Wei, Qing-YiERCC2 is indispensable for nucleotide excision repair pathway, and its functional polymorphisms may be associated with cancer risk. In a large case-control study of 1126 esophageal squamous cell carcinomas (ESCC) patients and 1131 controls, we genotyped two SNPs in ERCC2 (rs238406 G > T and rs13181 T > G) and assessed their associations with ESCC risk. We found a significantly elevated ESCC risk associated with the rs238406 T variant genotypes (adjusted OR = 1.30 and 1.24, 95% CI = 1.02-1.66 and 1.03-1.49 for TG and TG/TT, respectively, compared with GG), particularly in the subgroup of those smoked more than 16 pack-years. Multivariate logistic regression analysis suggested a possible multiplicative gene-environment interaction between rs238406 genotypes and smoking (Pinteraction = 0.026) on ESCC risk. Although no significant risk associations were observed for rs13181, further mini meta-analysis with our and 18 other published studies of 5,012 cases and 8,238 controls found evidence of an association between the rs13181 variant G allele and esophageal cancer risk (TG/GG vs. TT, OR = 1.17; 95% CI = 1.02-1.33). Interestingly, we consistently found a significant correlation between variant genotypes of these two SNPs and ERCC2 mRNA expression. These findings suggest that potentially functional SNPs in ERCC2 may contribute to ESCC risk.Item Open Access SplicerEX: a tool for the automated detection and classification of mRNA changes from conventional and splice-sensitive microarray expression data.(RNA (New York, N.Y.), 2012-08) Robinson, Timothy J; Forte, Eleonora; Salinas, Raul E; Puri, Shaan; Marengo, Matthew; Garcia-Blanco, Mariano A; Luftig, Micah AThe key postulate that one gene encodes one protein has been overhauled with the discovery that one gene can generate multiple RNA transcripts through alternative mRNA processing. In this study, we describe SplicerEX, a novel and uniquely motivated algorithm designed for experimental biologists that (1) detects widespread changes in mRNA isoforms from both conventional and splice sensitive microarray data, (2) automatically categorizes mechanistic changes in mRNA processing, and (3) mitigates known technological artifacts of exon array-based detection of alternative splicing resulting from 5' and 3' signal attenuation, background detection limits, and saturation of probe set signal intensity. In this study, we used SplicerEX to compare conventional and exon-based Affymetrix microarray data in a model of EBV transformation of primary human B cells. We demonstrated superior detection of 3'-located changes in mRNA processing by the Affymetrix U133 GeneChip relative to the Human Exon Array. SplicerEX-identified exon-level changes in the EBV infection model were confirmed by RT-PCR and revealed a novel set of EBV-regulated mRNA isoform changes in caspases 6, 7, and 8. Finally, SplicerEX as compared with MiDAS analysis of publicly available microarray data provided more efficiently categorized mRNA isoform changes with a significantly higher proportion of hits supported by previously annotated alternative processing events. Therefore, SplicerEX provides an important tool for the biologist interested in studying changes in mRNA isoform usage from conventional or splice-sensitive microarray platforms, especially considering the expansive amount of archival microarray data generated over the past decade. SplicerEX is freely available upon request.