Browsing by Subject "Cell Self Renewal"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes.(Antioxid Redox Signal, 2016-03-01) Suliman, Hagir B; Zobi, Fabio; Piantadosi, Claude AAIMS: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. RESULTS: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. INNOVATION: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. CONCLUSION: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as essential factors in ES cell differentiation as well as in the subsequent maturation of these cells into functional cardiac cells.Item Open Access Rare SOX2+ Airway Progenitor Cells Generate KRT5+ Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection.(Stem cell reports, 2016-11) Ray, Samriddha; Chiba, Norika; Yao, Changfu; Guan, Xiangrong; McConnell, Alicia M; Brockway, Brian; Que, Loretta; McQualter, Jonathan L; Stripp, Barry RRecent studies have implicated keratin 5 (KRT5)+ cells in repopulation of damaged lung tissue following severe H1N1 influenza virus infection. However, the origins of the cells repopulating the injured alveolar region remain controversial. We sought to determine the cellular dynamics of lung repair following influenza infection and define whether nascent KRT5+ cells repopulating alveolar epithelium were derived from pre-existing alveolar or airway progenitor cells. We found that the wound-healing response begins with proliferation of SOX2+ SCGB1A1- KRT5- progenitor cells in airways. These cells generate nascent KRT5+ cells as an early response to airway injury and yield progeny that colonize damaged alveolar parenchyma. Moreover, we show that local alveolar progenitors do not contribute to nascent KRT5+ cells after injury. Repopulation of injured airway and alveolar regions leads to proximalization of distal airways by pseudostratified epithelium and of alveoli by airway-derived epithelial cells that lack the normal characteristics of mature airway or alveolar epithelium.