Browsing by Subject "Cell Shape"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis.(Stem cell research & therapy, 2015-10) Fernandez-Moure, Joseph S; Corradetti, Bruna; Chan, Paige; Van Eps, Jeffrey L; Janecek, Trevor; Rameshwar, Pranela; Weiner, Bradley K; Tasciotti, EnnioIntroduction
Mesenchymal stem cells (MSCs) hold great promise for regenerative therapies in the musculoskeletal system. Although MSCs from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) have been extensively characterized, there is still debate as to the ideal source of MSCs for tissue-engineering applications in bone repair.Methods
MSCs were isolated from cortical bone fragments (CBF-MSCs) obtained from patients undergoing laminectomy, selected by fluorescence-activated cell sorting analysis, and tested for their potential to undergo mesodermic differentiation. CBF-MSCs were then compared with BM-MSCs and AD-MSCs for their colony-forming unit capability and osteogenic potential in both normoxia and hypoxia. After 2 and 4 weeks in inducing media, differentiation was assessed qualitatively and quantitatively by the evaluation of alkaline phosphatase (ALP) expression and mineral deposition (Von Kossa staining). Transcriptional activity of osteoblastogenesis-associated genes (Alp, RUNX2, Spp1, and Bglap) was also analyzed.Results
The cortical fraction of the bone contains a subset of cells positive for MSC-associated markers and capable of tri-lineage differentiation. The hypoxic conditions were generally more effective in inducing osteogenesis for the three cell lines. However, at 2 and 4 weeks, greater calcium deposition and ALP expression were observed in both hypoxic and normoxic conditions in CBF-MSCs compared with AD- and BM-MSCs. These functional observations were further corroborated by gene expression analysis, which showed a significant upregulation of Bglap, Alp, and Spp1, with a 22.50 (±4.55)-, 46.56 (±7.4)-, 71.46 (±4.16)-fold increase compared with their uninduced counterparts.Conclusions
This novel population of MSCs retains a greater biosynthetic activity in vitro, which was found increased in hypoxic conditions. The present study demonstrates that quantitative differences between MSCs retrieved from bone marrow, adipose, and the cortical portion of the bone with respect to their osteogenic potential exist and suggests the cortical bone as suitable candidate to use for orthopedic tissue engineering and regenerative medicine.Item Open Access How cells determine the number of polarity sites.(eLife, 2021-04-26) Chiou, Jian-Geng; Moran, Kyle D; Lew, Daniel JThe diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase toward a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.Item Open Access Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases.(Cytotherapy, 2015-06) Kurtzberg, Joanne; Buntz, Susan; Gentry, Tracy; Noeldner, Pamela; Ozamiz, April; Rusche, Benjamin; Storms, Robert W; Wollish, Amy; Wenger, David A; Balber, Andrew EBackground aims
Cord blood (CB) transplantation slows neurodegeneration during certain inherited metabolic diseases. However, the number of donor cells in the brain of patients does not appear to be sufficient to provide benefit until several months after transplant. We developed the cell product DUOC-01 to provide therapeutic effects in the early post-transplant period.Methods
DUOC-01 cultures initiated from banked CB units were characterized by use of time-lapse photomicroscopy during the 21-day manufacturing process. Antigen expression was measured by means of flow cytometry and immunocytochemistry; transcripts for cytokines and enzymes by quantitative real-time polymerase chain reaction; activities of lysosomal enzymes by direct biochemical analysis; alloreactivity of DUOC-01 and of peripheral blood (PB) mononuclear cells (MNC) to DUOC-01 by mixed lymphocyte culture methods; and cytokine secretion by Bioplex assays.Results
DUOC-01 cultures contained highly active, attached, motile, slowly proliferating cells that expressed common (cluster of differentiation [CD]11b, CD14 and Iba1), M1 type (CD16, inducible nitric oxide synthase), and M2-type (CD163, CD206) macrophage or microglia markers. Activities of 11 disease-relevant lysosomal enzymes in DUOC-01 products were similar to those of normal PB cells. All DUOC-01 products secreted interleukin (IL)-6 and IL-10. Accumulation of transforming growth factor-β, IL-1β, interferon-γ and TNF-α in supernatants was variable. IL-12, IL-2, IL-4, IL-5 and IL-13 were not detected at significant concentrations. Galactocerebrosidase, transforming growth factor-β and IL-10 transcripts were specifically enriched in DUOC-01 relative to CB cells. PB MNCs proliferated and released cytokines in response to DUOC-01. DUOC-01 did not proliferate in response to mismatched MNC.Conclusions
DUOC-01 has potential as an adjunctive cell therapy to myeloablative CB transplant for treatment of inherited metabolic diseases.