Browsing by Subject "Cell Size"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A noisy linear map underlies oscillations in cell size and gene expression in bacteria.(Nature, 2015-07-16) Tanouchi, Yu; Pai, Anand; Park, Heungwon; Huang, Shuqiang; Stamatov, Rumen; Buchler, Nicolas E; You, LingchongDuring bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.Item Open Access Generation of high curvature membranes mediated by direct endophilin bilayer interactions.(J Cell Biol, 2001-10-15) Farsad, K; Ringstad, N; Takei, K; Floyd, SR; Rose, K; De Camilli, PEndophilin 1 is a presynaptically enriched protein which binds the GTPase dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation of endophilin function in cell-free systems and in a living synapse has implicated endophilin in endocytic vesicle budding (Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Neuron. 24:143-154; Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke, W.B. Huttner, and H.D. Soling. 1999. Nature. 401:133-141; Gad, H., N. Ringstad, P. Low, O. Kjaerulff, J. Gustafsson, M. Wenk, G. Di Paolo, Y. Nemoto, J. Crun, M.H. Ellisman, et al. 2000. Neuron. 27:301-312). Here, we show that purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules similar in diameter to the neck of a clathrin-coated bud, providing new insight into the mechanisms through which endophilin may participate in membrane deformation and vesicle budding. This property of endophilin is independent of its putative lysophosphatydic acid acyl transferase activity, is mediated by its NH2-terminal region, and requires an amino acid stretch homologous to a corresponding region in amphiphysin, a protein previously shown to have similar effects on lipid bilayers (Takei, K., V.I. Slepnev, V. Haucke, and P. De Camilli. 1999. Nat. Cell Biol. 1:33-39). Endophilin cooligomerizes with dynamin rings on lipid tubules and inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid bilayers into tubules, underscoring a potential role of endophilin family members in diverse tubulovesicular membrane-trafficking events in the cell.Item Open Access Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling.(Circulation. Heart failure, 2011-03) Landstrom, AP; Kellen, CA; Dixit, SS; Van Oort, RJ; Garbino, A; Weisleder, N; Ma, J; Wehrens, XHT; Ackerman, MJJunctophilin-2 (JPH2), a protein expressed in the junctional membrane complex, is necessary for proper intracellular calcium (Ca(2+)) signaling in cardiac myocytes. Downregulation of JPH2 expression in a model of cardiac hypertrophy was recently associated with defective coupling between plasmalemmal L-type Ca(2+) channels and sarcoplasmic reticular ryanodine receptors. However, it remains unclear whether JPH2 expression is altered in patients with hypertrophic cardiomyopathy (HCM). In addition, the effects of downregulation of JPH2 expression on intracellular Ca(2+) handling are presently poorly understood. We sought to determine whether loss of JPH2 expression is noted among patients with HCM and whether expression silencing might perturb Ca(2+) handling in a prohypertrophic manner.JPH2 expression was reduced in flash-frozen human cardiac tissue procured from patients with HCM compared with ostensibly healthy traumatic death victims. Partial silencing of JPH2 expression in HL-1 cells by a small interfering RNA probe targeted to murine JPH2 mRNA (shJPH2) resulted in myocyte hypertrophy and increased expression of known markers of cardiac hypertrophy. Whereas expression levels of major Ca(2+)-handling proteins were unchanged, shJPH2 cells demonstrated depressed maximal Ca(2+) transient amplitudes that were insensitive to L-type Ca(2+) channel activation with JPH2 knockdown. Further, reduced caffeine-triggered sarcoplasmic reticulum store Ca(2+) levels were observed with potentially increased total Ca(2+) stores. Spontaneous Ca(2+) oscillations were elicited at a higher extracellular [Ca(2+)] and with decreased frequency in JPH2 knockdown cells.Our results show that JPH2 levels are reduced in patients with HCM. Reduced JPH2 expression results in reduced excitation-contraction coupling gain as well as altered Ca(2+) homeostasis, which may be associated with prohypertrophic remodeling.Item Open Access Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion.(Pain, 2013-08) Chen, Yong; Williams, Susan H; McNulty, Amy L; Hong, Ji Hee; Lee, Suk Hee; Rothfusz, Nicole E; Parekh, Puja K; Moore, Carlene; Gereau, Robert W; Taylor, Andrea B; Wang, Fan; Guilak, Farshid; Liedtke, WolfgangTemporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.