Browsing by Subject "Cells, Cultured"
Now showing 1 - 20 of 140
- Results Per Page
- Sort Options
Item Open Access A genome-wide RNAi screen reveals multiple regulators of caspase activation.(The Journal of cell biology, 2007-11-12) Yi, Caroline H; Sogah, Dodzie K; Boyce, Michael; Degterev, Alexei; Christofferson, Dana E; Yuan, JunyingApoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.Item Open Access A novel mutation of the ACADM gene (c.145C>G) associated with the common c.985A>G mutation on the other ACADM allele causes mild MCAD deficiency: a case report.(Orphanet J Rare Dis, 2010-10-05) Dessein, Anne-Frédérique; Fontaine, Monique; Andresen, Brage S; Gregersen, Niels; Brivet, Michèle; Rabier, Daniel; Napuri-Gouel, Silvia; Dobbelaere, Dries; Mention-Mulliez, Karine; Martin-Ponthieu, Annie; Briand, Gilbert; Millington, David S; Vianey-Saban, Christine; Wanders, Ronald JA; Vamecq, JosephA female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.Item Open Access A novel role for primary cilia in airway remodeling.(American journal of physiology. Lung cellular and molecular physiology, 2017-08) Trempus, Carol S; Song, Weifeng; Lazrak, Ahmed; Yu, Zhihong; Creighton, Judy R; Young, Bethany M; Heise, Rebecca L; Yu, Yen Rei; Ingram, Jennifer L; Tighe, Robert M; Matalon, Sadis; Garantziotis, StavrosPrimary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.Item Open Access A whole-cell and single-channel study of the voltage-dependent outward potassium current in avian hepatocytes.(J Gen Physiol, 1988-02) Marchetti, C; Premont, RT; Brown, AMVoltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.Item Open Access AAV Gene Therapy for MPS1-associated Corneal Blindness.(Scientific reports, 2016-02-22) Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew LAlthough cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.Item Open Access Abnormal oxidative stress responses in fibroblasts from preeclampsia infants.(PloS one, 2014-01) Yang, Penghua; Dai, Aihua; Alexenko, Andrei P; Liu, Yajun; Stephens, Amanda J; Schulz, Laura C; Schust, Danny J; Roberts, R Michael; Ezashi, ToshihikoBackground
Signs of severe oxidative stress are evident in term placentae of infants born to mothers with preeclampsia (PE), but it is unclear whether this is a cause or consequence of the disease. Here fibroblast lines were established from umbilical cords (UC) delivered by mothers who had experienced early onset PE and from controls with the goal of converting these primary cells to induced pluripotent stem cells and ultimately trophoblast. Contrary to expectations, the oxidative stress responses of these non-placental cells from PE infants were more severe than those from controls.Methods and findings
Three features suggested that UC-derived fibroblasts from PE infants responded less well to oxidative stressors than controls: 1) While all UC provided outgrowths in 4% O2, success was significantly lower for PE cords in 20% O2; 2) PE lines established in 4% O2 proliferated more slowly than controls when switched to 20% O2; 3) PE lines were more susceptible to the pro-oxidants diethylmaleate and tert-butylhydroquinone than control lines, but, unlike controls, were not protected by glutathione. Transcriptome profiling revealed only a few genes differentially regulated between PE lines and controls in 4% O2 conditions. However, a more severely stressed phenotype than controls, particularly in the unfolded protein response, was evident when PE lines were switched suddenly to 20% O2, thus confirming the greater sensitivity of the PE fibroblasts to acute changes in oxidative stress.Conclusions
UC fibroblasts derived from PE infants are intrinsically less able to respond to acute oxidative stress than controls, and this phenotype is retained over many cell doublings. Whether the basis of this vulnerability is genetic or epigenetic and how it pertains to trophoblast development remains unclear, but this finding may provide a clue to the basis of the early onset, usually severe, form of PE.Item Open Access Age-related changes in the cellular composition and epithelial organization of the mouse trachea.(PloS one, 2014-01) Wansleeben, Carolien; Bowie, Emily; Hotten, Danielle F; Yu, Yen-Rei A; Hogan, Brigid LMWe report here senescent changes in the structure and organization of the mucociliary pseudostratified epithelium of the mouse trachea and main stem bronchi. We confirm previous reports of the gradual appearance of age-related, gland-like structures (ARGLS) in the submucosa, especially in the intercartilage regions and carina. Immunohistochemistry shows these structures contain ciliated and secretory cells and Krt5+ basal cells, but not the myoepithelial cells or ciliated ducts typical of normal submucosal glands. Data suggest they arise de novo by budding from the surface epithelium rather than by delayed growth of rudimentary or cryptic submucosal glands. In old mice the surface epithelium contains fewer cells per unit length than in young mice and the proportion of Krt5+, p63+ basal cells is reduced in both males and females. However, there appears to be no significant difference in the ability of basal stem cells isolated from individual young and old mice to form clonal tracheospheres in culture or in the ability of the epithelium to repair after damage by inhaled sulfur dioxide. Gene expression analysis by Affymetrix microarray and quantitative PCR, as well as immunohistochemistry and flow sorting studies, are consistent with low-grade chronic inflammation in the tracheas of old versus young mice and an increase in the number of immune cells. The significance of these changes for ARGL formation are not clear since several treatments that induce acute inflammation in young mice did not result in budding of the surface epithelium.Item Open Access Airway fibroblasts in asthma manifest an invasive phenotype.(American journal of respiratory and critical care medicine, 2011-06) Ingram, Jennifer L; Huggins, Molly J; Church, Tony D; Li, Yuejuan; Francisco, Dave C; Degan, Simone; Firszt, Rafael; Beaver, Denise M; Lugogo, Njira L; Wang, Ying; Sunday, Mary E; Noble, Paul W; Kraft, MonicaRationale
Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.Objectives
We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.Methods
Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.Measurements and main results
IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.Conclusions
IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.Item Open Access Allo-Specific Humoral Responses: New Methods for Screening Donor-Specific Antibody and Characterization of HLA-Specific Memory B Cells.(Frontiers in immunology, 2021-01) Song, Shengli; Manook, Miriam; Kwun, Jean; Jackson, Annette M; Knechtle, Stuart J; Kelsoe, GarnettAntibody-mediated allograft rejection (AMR) causes more kidney transplant failure than any other single cause. AMR is mediated by antibodies recognizing antigens expressed by the graft, and antibodies generated against major histocompatibility complex (MHC) mismatches are especially problematic. Most research directed towards the management of clinical AMR has focused on identifying and characterizing circulating donor-specific HLA antibody (DSA) and optimizing therapies that reduce B-cell activation and/or block antibody secretion by inhibiting plasmacyte survival. Here we describe a novel set of reagents and techniques to allow more specific measurements of MHC sensitization across different animal transplant models. Additionally, we have used these approaches to isolate and clone individual HLA-specific B cells from patients sensitized by pregnancy or transplantation. We have identified and characterized the phenotypes of individual HLA-specific B cells, determined the V(D)J rearrangements of their paired H and L chains, and generated recombinant antibodies to determine affinity and specificity. Knowledge of the BCR genes of individual HLA-specific B cells will allow identification of clonally related B cells by high-throughput sequence analysis of peripheral blood mononuclear cells and permit us to re-construct the origins of HLA-specific B cells and follow their somatic evolution by mutation and selection.Item Open Access Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: cellular model of pathology.(PLoS Genet, 2010-01-15) Haugen, Astrid C; Di Prospero, Nicholas A; Parker, Joel S; Fannin, Rick D; Chou, Jeff; Meyer, Joel N; Halweg, Christopher; Collins, Jennifer B; Durr, Alexandra; Fischbeck, Kenneth; Van Houten, BennettThe neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.Item Open Access Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation.(Journal of virology, 2012-10) Price, Alexander M; Tourigny, Jason P; Forte, Eleonora; Salinas, Raul E; Dave, Sandeep S; Luftig, Micah AEpstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.Item Open Access Arc/Arg3.1 translation is controlled by convergent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways.(The Journal of biological chemistry, 2008-01) Bloomer, Wendy AC; VanDongen, Hendrika MA; VanDongen, Antonius MJArc/Arg3.1 is an immediate early gene whose expression is necessary for the late-phase of long-term potentiation (LTP) and memory consolidation. Whereas pathways regulating Arc transcription have been extensively investigated, less is known about the role of post-transcriptional mechanisms in Arc expression. Fluorescence microscopy experiments in cultured hippocampal neurons revealed that Arc protein level was dramatically increased by activation of the cAMP-dependent protein kinase (PKA) pathway, which is implicated in long-term memory. A PKA-dependent increase in Arc protein level was observed after pharmacological or synaptic activation of N-methyl-D-aspartate (NMDA) receptors, which play a critical role in both LTP induction and learning. Arc protein was also up-regulated by activation of PKA through G(s)-coupled dopamine and beta-adrenergic receptors, which regulate the late-phase of LTP and memory. When agonists for the NMDA and G(s)-coupled receptors were co-applied, they had an additive effect on Arc protein expression. Interestingly, G(s)-coupled receptor stimulation was ineffective in the presence of an NMDA receptor antagonist, suggesting calcium influx through the NMDA receptor plays a gating role in this pathway. Stimulation of the cAMP/PKA pathway did not affect Arc mRNA level or protein stability, identifying translational efficacy as the main determinant of Arc protein expression level. It is concluded that efficient Arc translation requires NMDA receptor activity, whereas a further enhancement can be achieved with activation of G(s)-coupled receptors. These experiments have, therefore, revealed remarkable similarities in the signaling pathways that control Arc expression and those that regulate LTP, learning, and memory.Item Open Access Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck.(Molecular carcinogenesis, 2018-06) Han, Peng; Liu, Hongliang; Shi, Qiong; Liu, Zhensheng; Troy, Jesse D; Lee, Walter T; Zevallos, Jose P; Li, Guojun; Sturgis, Erich M; Wei, QingyiSquamous cell carcinoma of head and neck (SCCHN) is one of the most common malignancies worldwide, and nucleotide excision repair (NER) is involved in SCCHN susceptibility. In this analysis of 349 newly diagnosed SCCHN patients and 295 cancer-free controls, we investigated whether expression levels of eight core NER proteins were associated with risk of SCCHN. We quantified NER protein expression levels in cultured peripheral lymphocytes using a reverse-phase protein microarray. Compared with the controls, SCCHN patients had statistically significantly lower expression levels of ERCC3 and XPA (P = 0.001 and 0.001, respectively). After dividing the subjects by controls' median values of expression levels, we found a dose-dependent association between an increased risk of SCCHN and low expression levels of ERCC3 (adjusted OR, 1.75, and 95% CI: 1.26-2.42; Ptrend = 0.008) and XPA (adjusted OR, 1.88; 95% CI, 1.35-2.60; Ptrend = 0.001). We also identified a significant multiplicative interaction between smoking status and ERCC3 expression levels (P = 0.014). Finally, after integrating demographic and clinical variables, we found that the addition of ERCC3 and XPA expression levels to the model significantly improved the sensitivity of the expanded model on SCCHN risk. In conclusion, reduced protein expression levels of ERCC3 and XPA were associated with an increased risk of SCCHN. However, these results need to be confirmed in additional large studies.Item Open Access Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist.(Spine, 2011-07) Sinclair, S Michael; Shamji, Mohammed F; Chen, Jun; Jing, Liufang; Richardson, William J; Brown, Christopher R; Fitch, Robert D; Setton, Lori AStudy design
The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro.Objective
To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro.Summary of background data
TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown.Methods
IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells.Results
Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively.Conclusion
Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.Item Open Access Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist.(2010) Sinclair, Steven MichaelSTUDY DESIGN: The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro. OBJECTIVE: To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro. SUMMARY OF BACKGROUND DATA: TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown. METHODS: IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells. RESULTS: Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively. CONCLUSION: Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.Item Open Access Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation.(Hypertension, 1999-01) Dolber, Paul Christian; Iaccarino, Guido; Koch, Walter J; Lefkowitz, Robert JPressure overload ventricular hypertrophy is accompanied by dysfunctional beta-adrenergic receptor signaling due to increased levels of the beta-adrenergic receptor kinase-1, which phosphorylates and desensitizes beta-adrenergic receptors. In this study, we examined whether increased beta-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between alpha1- and beta-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in beta-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in beta-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter beta-adrenergic receptor kinase-1 expression. Our results indicate that increased beta-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of beta-adrenergic receptor activation.Item Restricted beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1.(Mol Cell Biol, 2004-10) Usui, Isao; Imamura, Takeshi; Huang, Jie; Satoh, Hiroaki; Shenoy, Sudha K; Lefkowitz, Robert J; Hupfeld, Christopher J; Olefsky, Jerrold Mbeta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.Item Open Access beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi.(Proc Natl Acad Sci U S A, 2003-02-04) Baillie, George S; Sood, Arvind; McPhee, Ian; Gall, Irene; Perry, Stephen J; Lefkowitz, Robert J; Houslay, Miles DPhosphorylation of the beta(2) adrenoreceptor (beta(2)AR) by cAMP-activated protein kinase A (PKA) switches its predominant coupling from stimulatory guanine nucleotide regulatory protein (G(s)) to inhibitory guanine nucleotide regulatory protein (G(i)). beta-Arrestins recruit the cAMP-degrading PDE4 phosphodiesterases to the beta(2)AR, thus controlling PKA activity at the membrane. Here we investigate a role for PDE4 recruitment in regulating G protein switching by the beta(2)AR. In human embryonic kidney 293 cells overexpressing a recombinant beta(2)AR, stimulation with isoprenaline recruits beta-arrestins 1 and 2 as well as both PDE4D3 and PDE4D5 to the receptor and stimulates receptor phosphorylation by PKA. The PKA phosphorylation status of the beta(2)AR is enhanced markedly when cells are treated with the selective PDE4-inhibitor rolipram or when they are transfected with a catalytically inactive PDE4D mutant (PDE4D5-D556A) that competitively inhibits isoprenaline-stimulated recruitment of native PDE4 to the beta(2)AR. Rolipram and PDE4D5-D556A also enhance beta(2)AR-mediated activation of extracellular signal-regulated kinases ERK12. This is consistent with a switch in coupling of the receptor from G(s) to G(i), because the ERK12 activation is sensitive to both inhibitors of PKA (H89) and G(i) (pertussis toxin). In cardiac myocytes, the beta(2)AR also switches from G(s) to G(i) coupling. Treating primary cardiac myocytes with isoprenaline induces recruitment of PDE4D3 and PDE4D5 to membranes and activates ERK12. Rolipram robustly enhances this activation in a manner sensitive to both pertussis toxin and H89. Adenovirus-mediated expression of PDE4D5-D556A also potentiates ERK12 activation. Thus, receptor-stimulated beta-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the beta(2)AR in a physiological system, the cardiac myocyte.Item Open Access Bladder fibrosis during outlet obstruction is triggered through the NLRP3 inflammasome and the production of IL-1β.(American journal of physiology. Renal physiology, 2017-09) Hughes, Francis M; Sexton, Stephanie J; Jin, Huixia; Govada, Vihasa; Purves, J ToddBladder outlet obstruction (BOO) triggers inflammation in the bladder through the NLRP3 inflammasome. BOO also activates fibrosis, which is largely responsible for the decompensation of the bladder in the chronic state. Because fibrosis can be driven by inflammation, we have explored a role for NLRP3 (and IL-1β produced by NLRP3) in the activation and progression of BOO-induced fibrosis. Female rats were divided into five groups: 1) control, 2) sham, 3) BOO + vehicle, 4) BOO + the NLRP3 inhibitor glyburide, or 5) BOO + the IL-1β receptor antagonist anakinra. Fibrosis was assessed by Masson's trichrome stain, collagen secretion via Sirius Red, and protein localization by immunofluorescence. BOO increased collagen production in the bladder, which was blocked by glyburide and anakinra, clearly implicating the NLRP3/IL-1β pathway in fibrosis. The collagen was primarily found in the lamina propria and the smooth muscle, while IL-1 receptor 1 and prolyl 4-hydroylase (an enzyme involved in the intracellular modification of collagen) both localized to the urothelium and the smooth muscle. Lysyl oxidase, the enzyme involved in the final extracellular assembly of mature collagen fibrils, was found to some extent in the lamina propria where its expression was greatly enhanced during BOO. In vitro studies demonstrated isolated urothelial cells from BOO rats secreted substantially more collagen than controls, and collagen expression in control cultures could be directly stimulated by IL-1β. In summary, NLRP3-derived-IL-1β triggers fibrosis during BOO, most likely through an autocrine loop in which IL-1β acts on urothelia to drive collagen production.Item Open Access Bone Marrow Mesenchymal Stem Cell Transplantation Increases GAP-43 Expression via ERK1/2 and PI3K/Akt Pathways in Intracerebral Hemorrhage.(Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017-01) Cui, Jianzhong; Cui, Changmeng; Cui, Ying; Li, Ran; Sheng, Huaxin; Jiang, Xiaohua; Tian, Yanxia; Wang, Kaijie; Gao, JunlingBackground/aims
Intracerebral hemorrhage (ICH) occurs in hypertensive patients and results in high rates of mortality and disability. This study determined whether bone marrow mesenchymal stem cell (BMSC) transplantation affects axonal regeneration and examined the underlying mechanisms after the administration of PD98059 (p-ERK1/2 inhibitor) or/ and LY294002 (PI3K inhibitor). The hypothesis that was intended to be tested was that BMSC transplantation regulates the expression of growth-associated protein-43 (GAP-43) via the ERK1/2 and PI3K/Akt signaling pathways.Methods
Seventy-five male rats (250-280 g) were subjected to intracerebral blood injection and then randomly received a vehicle, BMSCs, PD98059 or LY294002 treatment. Neurological deficits were evaluated prior to injury and at 1, 3 and 7 days post-injury. The expression of GAP-43, Akt, p-Akt, ERK1/2, and p-ERK1/2 proteins was measured by western blot analysis.Results
BMSC transplantation attenuated neurological deficits 3-7 days post-ICH. The expression of GAP-43 was increased 3 days following BMSC transplantation. However, this increase was inhibited by either PD98059 or LY294002 treatment. Treatment with both PD98059 and LY294002 was more effective than was treatment with an individual compound.Conclusion
BMSC transplantation could attenuate neurological deficits and activate axonal regeneration in this rat ICH model. The protective effects might be associated with increased GAP-43 expression by activating both the ERK1/2 and PI3K/Akt signaling pathways.