Browsing by Subject "Central Africa"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Estimates and determinants of stocks of deep soil carbon in Gabon, Central Africa(Geoderma, 2019-05-01) Wade, AM; Richter, DD; Medjibe, VP; Bacon, AR; Heine, PR; White, LJT; Poulsen, JR© 2019 Despite the importance of tropical forest carbon to the global carbon cycle, research on carbon stocks is incomplete in major areas of the tropical world. Nowhere in the tropics is this more the case than in Africa, and especially Central Africa, where carbon stocks are known to be high but a scarcity of data limits understanding of carbon stocks and drivers. In this study, we present the first nation-wide measurements and determinants of soil carbon in Gabon, a nation in Central Africa. We estimated soil carbon to a 2-m depth using a systematic, random design of 59 plots located across Gabon. Soil carbon to a 2-m depth averaged 163 Mg ha −1 with a CV of 61%. These soil carbon stocks accounted for approximately half of the total carbon accumulated in aboveground biomass and soil pools. Nearly a third of soil carbon was stored in the second meter of soil, averaging 58 Mg ha −1 with a CV of 94%. Lithology, soil type, and terrain attributes were found to be significant predictors of cumulative SOC stocks to a 2-m depth. Current protocols of the IPCC are to sample soil carbon from the surface 30 cm, which in this study would underestimate soil carbon by 60% and underestimate ecosystem carbon by 30%. A nonlinear model using a power function predicted cumulative soil carbon stocks in the second meter with an average error of prediction of 3.2 Mg ha −1 (CV = 915%) of measured values. The magnitude and turnover of deep soil carbon in tropical forests needs to be estimated as more countries prioritize carbon accounting and monitoring in response to accelerating land-use change.Item Open Access Expected carbon emissions from a rubber plantation in Central Africa(Forest Ecology and Management, 2021-01-15) Jong, Ying Wei; Beirne, Christopher; Meunier, Quentin; Mekui Biyogo, Andréana Paola; Ebang Mbélé, Alex; Stewart, Christopher G; Poulsen, John RThe development of agriculture on degraded lands is increasingly seen as a strategy to boost food availability and economic productivity while minimizing environmental degradation and loss of forests. To understand the effects of agricultural production on forest carbon, we quantify the aboveground carbon (AGC) of a degraded forest in northeast Gabon (the Olam Rubber Gabon concession) designated for development to a rubber plantation. Combining field measurements from 19 1-ha tree plots and aerial LiDAR, we estimate forest AGC stocks and emissions under four development scenarios: no development, 30-year rubber rotation, extended rubber rotation (replanting of plantation in stages at 30 and 40 years), and 30-year oil palm rotation. On average, the degraded forest in the study area stored 123.8 Mg C ha−1, a mean AGC lower than the Gabon average (141.6 Mg C ha−1) but substantially higher than the 75 Mg C ha−1 threshold recommended by the High Carbon Stock protocol. Converting secondary forest to plantation might incur high environmental opportunity costs from lost carbon sequestration through forest succession and growth. In this study, we estimate that a rubber plantation can sequester similar amounts of AGC as secondary forest by the end of a 30-year rotation; however, the time-averaged AGC of regenerating secondary forests under no development would be 184% higher than a mature rubber plantation with a 30-year rotation, 169% higher than an extended rubber rotation, and 512% higher than a 30-year oil palm rotation. When degraded forest is developed for agriculture, measures should be taken to avoid emissions and prolong carbon retention. We specifically estimate carbon retention from extended harvest rotations and conserving high carbon value areas as set-asides and highlight recommendations from the literature such as minimizing soil disturbance and creating rubber timber products (e.g. furniture). To minimize carbon emissions from agriculture, crop plantation area should be minimized at national and regional scales in highly forested countries, and new plantations should be coupled explicitly with effective forest restoration actions, through suitable regulation and planning, to mitigate or compensate for their climate and biodiversity impacts.Item Open Access Gabon’s Overlooked Carbon: A tropical forest study of coarse woody debris(2013-04-26) Carlson, BenLarge dead trees and other large forest detritus (collectively known as coarse woody debris, or CWD) play an important role in the global carbon cycle. In tropical systems, CWD stocks (necromass) have been found to constitute 5% to 33% of total biomass. Despite harboring the second largest rain forest on earth, in Central Africa there have been virtually no studies of coarse woody debris. In this study 15 plots were established in 5 forest zones in Gabon, Africa to measure CWD stocks and potential environmental and land-use determinants of CWD. Necromass of CWD was found to be positively correlated with precipitation and was higher in logged forests than in primary forests. Extrapolated to the entire country, Gabon is estimated to contain carbon CWD content of between 0.34 Pg C to 0.72 Pg C (14 Mg C ha-1 to 30.1 Mg C ha-1). The results of this study will help improve tropical forest carbon flux estimates.Item Open Access Old growth Afrotropical forests critical for maintaining forest carbon(Global Ecology and Biogeography, 2020-10-01) Poulsen, JR; Medjibe, VP; White, LJT; Miao, Z; Banak-Ngok, L; Beirne, C; Clark, CJ; Cuni-Sanchez, A; Disney, M; Doucet, JL; Lee, ME; Lewis, SL; Mitchard, E; Nuñez, CL; Reitsma, J; Saatchi, S; Scott, CTAim: Large trees [≥ 70 cm diameter at breast height (DBH)] contribute disproportionately to aboveground carbon stock (AGC) across the tropics but may be vulnerable to changing climate and human activities. Here we determine the distribution, drivers and threats to large trees and high carbon forest. Location: Central Africa. Time period: Current. Major taxa studied: Trees. Methods: Using Gabon's new National Resource Inventory of 104 field sites, AGC was calculated from 67,466 trees from 578 species and 97 genera. Power and Michaelis–Menten models assessed the contribution of large trees to AGC. Environmental and anthropogenic drivers of AGC, large trees, and stand variables were modelled using Akaike’s information criterion (AIC) weights to calculate average regression coefficients for all p. ossible models. Results: Mean AGC for trees ≥ 10 cm DBH in Gabonese forestlands was 141.7 Mg C/ha, with averages of 166.6, 171.3 and 96.6 Mg C/ha in old growth, concession and secondary forest. High carbon forests occurred where large trees are most abundant: 31% of AGC was stored in large trees (2.3% of all stems). Human activities largely drove variation in AGC and large trees, but climate and edaphic conditions also determined stand variables (basal area, tree height, wood density, stem density). AGC and large trees increased with distance from human settlements; AGC was 40% lower in secondary than primary and concession forests and 33% higher in protected than non-managed areas. Main conclusions: AGC and large trees were negatively associated with human activities, highlighting the importance of forest management. Redefining large trees as ≥ 50 cm DBH (4.3% more stems) would account for 20% more AGC. This study demonstrates that protecting relatively undisturbed forests can be disproportionately effective in conserving carbon and suggests that including sustainable forestry in programs like reduced emissions for deforestation and forest degradation could maintain carbon dense forests in logging concessions that are a large proportion of remaining Central African forests.Item Open Access The ecological consequences of forest elephant declines for Afrotropical forests.(Conservation biology : the journal of the Society for Conservation Biology, 2017-10-27) Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, MarkPoaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat, thus their loss will have strong consequences for the composition and structure of Afrotropical forests. We evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, with tree species composition depending on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density as they are released from the pressures of browsing. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees, resulting in a more homogeneous forest structure and decreased carbon stocks. In sum, the loss of ecological services by forest elephants will likely transform Central African forests to be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. This article is protected by copyright. All rights reserved.