Browsing by Subject "Cerebral Cortex"
Now showing 1 - 20 of 35
Results Per Page
Sort Options
Item Open Access A beta-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination.(Proc Natl Acad Sci U S A, 1993-02-15) Schleicher, S; Boekhoff, I; Arriza, J; Lefkowitz, RJ; Breer, HWe have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.Item Open Access A mathematical model for persistent post-CSD vasoconstriction.(PLoS computational biology, 2020-07-15) Xu, Shixin; Chang, Joshua C; Chang, Joshua C; Chow, Carson C; Brennan, KC; Huang, HuaxiongCortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.Item Open Access Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging.(Am J Psychiatry, 2002-06) Due, Deborah L; Huettel, Scott A; Hall, Warren G; Rubin, David COBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.Item Open Access Advances in understanding mechanisms of thalamic relays in cognition and behavior.(J Neurosci, 2014-11-12) Mitchell, Anna S; Sherman, S Murray; Sommer, Marc A; Mair, Robert G; Vertes, Robert P; Chudasama, YogitaThe main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.Item Open Access Age-related differences in the neural bases of phonological and semantic processes in the context of task-irrelevant information.(Cognitive, affective & behavioral neuroscience, 2019-08) Diaz, Michele T; Johnson, Micah A; Burke, Deborah M; Truong, Trong-Kha; Madden, David JAs we age we have increasing difficulty with phonological aspects of language production. Yet semantic processes are largely stable across the life span. This suggests a fundamental difference in the cognitive and potentially neural architecture supporting these systems. Moreover, language processes such as these interact with other cognitive processes that also show age-related decline, such as executive function and inhibition. The present study examined phonological and semantic processes in the presence of task-irrelevant information to examine the influence of such material on language production. Older and younger adults made phonological and semantic decisions about pictures in the presence of either phonologically or semantically related words, which were unrelated to the task. FMRI activation during the semantic condition showed that all adults engaged typical left-hemisphere language regions, and that this activation was positively correlated with efficiency across all adults. In contrast, the phonological condition elicited activation in bilateral precuneus and cingulate, with no clear brain-behavior relationship. Similarly, older adults exhibited greater activation than younger adults in several regions that were unrelated to behavioral performance. Our results suggest that as we age, brain-behavior relations decline, and there is an increased reliance on both language-specific and domain-general brain regions that are seen most prominently during phonological processing. In contrast, the core semantic system continues to be engaged throughout the life span, even in the presence of task-irrelevant information.Item Open Access Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.(PLoS One, 2010-08-20) Jiang, Yong-Hui; Pan, Yanzhen; Zhu, Li; Landa, Luis; Yoo, Jong; Spencer, Corinne; Lorenzo, Isabel; Brilliant, Murray; Noebels, Jeffrey; Beaudet, Arthur LAngelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.Item Open Access Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.(Sci Rep, 2014-10-13) Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich DA pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.Item Open Access Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons.(Scientific reports, 2017-09-20) Tartaglia, Elisa M; Brunel, NicolasElectrophysiological recordings in cortex in vivo have revealed a rich variety of dynamical regimes ranging from irregular asynchronous states to a diversity of synchronized states, depending on species, anesthesia, and external stimulation. The average population firing rate in these states is typically low. We study analytically and numerically a network of sparsely connected excitatory and inhibitory integrate-and-fire neurons in the inhibition-dominated, low firing rate regime. For sufficiently high values of the external input, the network exhibits an asynchronous low firing frequency state (L). Depending on synaptic time constants, we show that two scenarios may occur when external inputs are decreased: (1) the L state can destabilize through a Hopf bifucation as the external input is decreased, leading to synchronized oscillations spanning d δ to β frequencies; (2) the network can reach a bistable region, between the low firing frequency network state (L) and a quiescent one (Q). Adding an adaptation current to excitatory neurons leads to spontaneous alternations between L and Q states, similar to experimental observations on UP and DOWN states alternations.Item Open Access Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm.(J Cogn Neurosci, 2004-11) Cabeza, Roberto; Prince, Steve E; Daselaar, Sander M; Greenberg, Daniel L; Budde, Matthew; Dolcos, Florin; LaBar, Kevin S; Rubin, David CFunctional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.Item Open Access Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection.(Journal of neurovirology, 2017-06) Cordero, Daniella M; Towe, Sheri L; Chen, Nan-Kuei; Robertson, Kevin R; Madden, David J; Huettel, Scott A; Meade, Christina SThis study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC-, 37 HIV-/COC+, and 35 HIV-/COC-) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV- participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.Item Open Access Coherence potentials: loss-less, all-or-none network events in the cortex.(PLoS Biol, 2010-01-12) Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A; Plenz, DietmarTransient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular associations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks.Item Open Access Cortical iron mediates age-related decline in fluid cognition.(Human brain mapping, 2022-02) Howard, Cortney M; Jain, Shivangi; Cook, Angela D; Packard, Lauren E; Mullin, Hollie A; Chen, Nan-Kuei; Liu, Chunlei; Song, Allen W; Madden, David JBrain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.Item Open Access Development of hemispheric specialization for lexical pitch-accent in Japanese infants.(J Cogn Neurosci, 2010-11) Sato, Yutaka; Sogabe, Yuko; Mazuka, ReikoInfants' speech perception abilities change through the first year of life, from broad sensitivity to a wide range of speech contrasts to becoming more finely attuned to their native language. What remains unclear, however, is how this perceptual change relates to brain responses to native language contrasts in terms of the functional specialization of the left and right hemispheres. Here, to elucidate the developmental changes in functional lateralization accompanying this perceptual change, we conducted two experiments on Japanese infants using Japanese lexical pitch-accent, which changes word meanings with the pitch pattern within words. In the first behavioral experiment, using visual habituation, we confirmed that infants at both 4 and 10 months have sensitivities to the lexical pitch-accent pattern change embedded in disyllabic words. In the second experiment, near-infrared spectroscopy was used to measure cortical hemodynamic responses in the left and right hemispheres to the same lexical pitch-accent pattern changes and their pure tone counterparts. We found that brain responses to the pitch change within words differed between 4- and 10-month-old infants in terms of functional lateralization: Left hemisphere dominance for the perception of the pitch change embedded in words was seen only in the 10-month-olds. These results suggest that the perceptual change in Japanese lexical pitch-accent may be related to a shift in functional lateralization from bilateral to left hemisphere dominance.Item Open Access Disconnected aging: cerebral white matter integrity and age-related differences in cognition.(Neuroscience, 2014-09) Bennett, IJ; Madden, DJCognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging.Item Open Access Drivers from the deep: the contribution of collicular input to thalamocortical processing.(Prog Brain Res, 2005) Wurtz, Robert H; Sommer, Marc A; Cavanaugh, JamesA traditional view of the thalamus is that it is a relay station which receives sensory input and conveys this information to cortex. This sensory input determines most of the properties of first order thalamic neurons, and so is said to drive, rather than modulate, these neurons. This holds as a rule for first order thalamic nuclei, but in contrast, higher order thalamic nuclei receive much of their driver input back from cerebral cortex. In addition, higher order thalamic neurons receive inputs from subcortical movement-related centers. In the terminology popularized from studies of the sensory system, can we consider these ascending motor inputs to thalamus from subcortical structures to be modulators, subtly influencing the activity of their target neurons, or drivers, dictating the activity of their target neurons? This chapter summarizes relevant evidence from neuronal recording, inactivation, and stimulation of pathways projecting from the superior colliculus through thalamus to cerebral cortex. The study concludes that many inputs to the higher order nuclei of the thalamus from subcortical oculomotor areas - from the superior colliculus and probably other midbrain and pontine regions - should be regarded as motor drivers analogous to the sensory drivers at the first order thalamic nuclei. These motor drivers at the thalamus are viewed as being at the top of a series of feedback loops that provide information on impending actions, just as sensory drivers provide information about the external environment.Item Open Access Effective spread and timecourse of neural inactivation caused by lidocaine injection in monkey cerebral cortex.(J Neurosci Methods, 1997-06-06) Tehovnik, EJ; Sommer, MAWe studied the effective spread of lidocaine to inactivate neural tissue in the frontal cortex of the rhesus monkey. Injections of 2% lidocaine at 4 microl/min were made while units were recorded 1 or 2 mm away. To inactivate units 1 mm away from the injection site 100% of the time, 7 microl of lidocaine had to be injected. To inactivate units 2 mm away from the injection site 100% of the time, 30 microl of lidocaine were required. Units were maximally inactivated around 8 min after the start of a lidocaine injection, and they gradually recovered, regaining most of their initial activity by around 30 min after the start of an injection. The volume of lidocaine required to inactivate neurons > 90% of the time could be estimated by the spherical volume equation, V = 4/3 pi (r)3. To prolong the inactivation, a slower infusion of lidocaine subsequent to an initial bolus was effective. Saline control injections had no effect. These results allow both a prediction of the timecourse of neural inactivation and an estimate of the spread of neural inactivation following injection of lidocaine into the monkey cerebral cortex.Item Open Access Frontal eye field neurons with spatial representations predicted by their subcortical input.(J Neurosci, 2009-04-22) Crapse, Trinity B; Sommer, Marc AThe frontal eye field (FEF) is a cortical structure involved in cognitive aspects of eye movement control. Neurons in the FEF, as in most of cerebral cortex, primarily represent contralateral space. They fire for visual stimuli in the contralateral field and for saccadic eye movements made to those stimuli. Yet many FEF neurons engage in sophisticated functions that require flexible spatial representations such as shifting receptive fields and vector subtraction. Such functions require knowledge about all of space, including the ipsilateral hemifield. How does the FEF gain access to ipsilateral information? Here, we provide evidence that one source of ipsilateral information may be the opposite superior colliculus (SC) in the midbrain. We physiologically identified neurons in the FEF that receive input from the opposite SC, same-side SC, or both. We found a striking structure-function relationship: the laterality of the response field of an FEF neuron was predicted by the laterality of its SC inputs. FEF neurons with input from the opposite SC had ipsilateral fields, whereas neurons with input from the same-side SC had contralateral fields. FEF neurons with input from both SCs had lateralized fields that could point in any direction. The results suggest that signals from the two SCs provide each FEF with information about all of visual space, a prerequisite for higher level sensorimotor computations.Item Open Access Functional modular architecture underlying attentional control in aging.(NeuroImage, 2017-07) Monge, Zachary A; Geib, Benjamin R; Siciliano, Rachel E; Packard, Lauren E; Tallman, Catherine W; Madden, David JPrevious research suggests that age-related differences in attention reflect the interaction of top-down and bottom-up processes, but the cognitive and neural mechanisms underlying this interaction remain an active area of research. Here, within a sample of community-dwelling adults 19-78 years of age, we used diffusion reaction time (RT) modeling and multivariate functional connectivity to investigate the behavioral components and whole-brain functional networks, respectively, underlying bottom-up and top-down attentional processes during conjunction visual search. During functional MRI scanning, participants completed a conjunction visual search task in which each display contained one item that was larger than the other items (i.e., a size singleton) but was not informative regarding target identity. This design allowed us to examine in the RT components and functional network measures the influence of (a) additional bottom-up guidance when the target served as the size singleton, relative to when the distractor served as the size singleton (i.e., size singleton effect) and (b) top-down processes during target detection (i.e., target detection effect; target present vs. absent trials). We found that the size singleton effect (i.e., increased bottom-up guidance) was associated with RT components related to decision and nondecision processes, but these effects did not vary with age. Also, a modularity analysis revealed that frontoparietal module connectivity was important for both the size singleton and target detection effects, but this module became central to the networks through different mechanisms for each effect. Lastly, participants 42 years of age and older, in service of the target detection effect, relied more on between-frontoparietal module connections. Our results further elucidate mechanisms through which frontoparietal regions support attentional control and how these mechanisms vary in relation to adult age.Item Open Access Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits.(J Neurosci, 2014-07-09) McKinstry, Spencer U; Karadeniz, Yonca B; Worthington, Atesh K; Hayrapetyan, Volodya Y; Ozlu, M Ilcim; Serafin-Molina, Karol; Risher, W Christopher; Ustunkaya, Tuna; Dragatsis, Ioannis; Zeitlin, Scott; Yin, Henry H; Eroglu, CaglaHuntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.Item Open Access Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep.(J Neurosci, 2002-12-15) Ribeiro, Sidarta; Mello, Claudio V; Velho, Tarciso; Gardner, Timothy J; Jarvis, Erich D; Pavlides, ConstantineRapid-eye-movement (REM) sleep plays a key role in the consolidation of memories acquired during waking (WK). The search for mechanisms underlying that role has revealed significant correlations in the patterns of neuronal firing, regional blood flow, and expression of the activity-dependent gene zif-268 between WK and subsequent REM sleep. Zif-268 integrates a major calcium signal transduction pathway and is implicated by several lines of evidence in activity-dependent synaptic plasticity. Here we report that the induction of hippocampal long-term potentiation (LTP) during WK in rats leads to an upregulation of zif-268 gene expression in extrahippocampal regions during subsequent REM sleep episodes. This upregulation occurs predominantly in the amygdala, entorhinal, and auditory cerebral cortices during the first REM sleep episodes after LTP induction and reaches somatosensory and motor cerebral cortices as REM sleep recurs. We also show that hippocampal inactivation during REM sleep blocks extrahippocampal zif-268 upregulation, indicating that cortical and amygdalar zif-268 expression during REM sleep is under hippocampal control. Thus, expression of an activity-dependent gene involved in synaptic plasticity propagates gradually from the hippocampus to extrahippocampal regions as REM sleep recurs. These findings suggest that a progressive disengagement of the hippocampus and engagement of the cerebral cortex and amygdala occurs during REM sleep. They are also consistent with the view that REM sleep constitutes a privileged window for hippocampus-driven cortical activation, which may play an instructive role in the communication of memory traces from the hippocampus to the cerebral cortex.