Browsing by Subject "Chemistry, Biochemistry"
- Results Per Page
- Sort Options
Item Open Access A Covalent Modification Technique for Protein-Ligand Binding Analysis Using Mass Spectrometry-Based Proteomics Platforms(2009) West, Graham MeldahlCurrently there is a dearth of analytical techniques for studying protein-ligand interactions on the proteomic scale. Existing techniques, which rely on various calorimetry or spectroscopy methods, are limited in their application to the proteomic scale due to their need for large amounts of pure protein. Recently, several mass spectrometry-based methods have been developed to study protein-ligand interactions. These mass spectrometry-based methods overcome some of the limitations of existing techniques by enabling the analysis of unpurified protein samples. However, the existing mass spectrometry-based methodologies for the analysis of protein-ligand binding interactions are not directly compatible with current mass spectrometry-based proteomics platforms.
Described here is the development and application of a new technique designed to detect and quantify protein-ligand binding interactions with mass spectrometry-based proteomic platforms. This technique, termed SPROX (Stability of Proteins from Rates of Oxidation), uses an irreversible covalent oxidation labeling reaction to monitor the global unfolding reactions of proteins to measure protein thermodynamic stability. Two variations of the SPROX technique are established here, including one variation that utilizes chemical denaturant to induce protein unfolding and a second variation that utilizes temperature to denature proteins. The SPROX methodology is tested on five proteins including ubiquitin, ribonuclease A, bovine carbonic anhydrase II, cyclophilin A, and calmodulin. Results obtained on these model systems are used to determine the method's ability to measure the thermodynamic parameters associated with each protein's folding/unfolding reaction. Results obtained on calmodulin and cyclophilin A are used to determine the method's ability to quantify the dissociation constants of protein-ligand complexes.
The primary motivation for the development of the SPROX protocols in this work was to create a protein-ligand binding assay that could be interfaced with conventional mass spectrometry-based platforms. Two specific SPROX protocols, including a label-free approach and an oxygen-16/18 labeling approach, are developed and demonstrated using the thermal SPROX technique to analyze ligand binding in a model four-protein component mixture consisting of ubiquitin, ribonuclease A, bovine carbonic anhydrase, and cyclophilin A. The thermal SPROX technique's ability to detect cyclosporin A binding to cyclophilin A in the context of the model mixture is shown using both labeling approaches.
An application using the SPROX technique combined with a multi-dimensional protein identification technology (MudPIT)-based proteomics platform is also described. In this application, which utilized an isobaric mass tagging strategy, 325 proteins in a yeast cell lysate are simultaneously assayed for CsA-binding. This study was also used to investigate the protein targets of an already well-studied immunosuppressive drug, cyclosporin A. Two of the ten protein targets identified in this work are known to interact with CsA, one through a direct binding event and one through an indirect binding event. The eight newly discovered protein targets of CsA suggest a molecular basis for post-transplant diabetes mellitus, which is a side effect of CsA in humans.
Item Open Access A Genetic Screen for the Identification of Mutants Hypersensitive to 5-Azacytidine(2010) Wu, Sunny YangA DNA-protein crosslink is a covalent bond between DNA and a protein. It is a type of DNA damage that is relatively understudied. This study reports on the identification of a set of transposon mutants sensitive to 5-azacytidine, a DNA- protein crosslink induction agent that induces a crosslink between DNA and a DNA methyltransferase protein. The screen showed that certain recombination, DNA repair, and tRNA modification mutants are hypersensitive to 5-azacytidine. These included the recombination recA, recC, and recG mutants. Since the recombination mutants consistently show high sensitivity to aza-C, it suggests a role for recombination in DNA-protein crosslink repair. Western blots for the levels of methyltransferase protein showed that mutants have similar levels of methyltransferase protein compared to wild type cells, arguing that the mutants' hypersensitivity to aza-C is not because of increased methyltransferase levels. Western blots for the levels of SsrA tagging in the presence of 5-azacytidine showed that the tRNA modification transposon mutants miaA, mnmE, and mnmG are all defective in SsrA tagging, which likely explains their hypersensitivity. The SsrA tag Western blots also unexpectedly showed that the recA transposon mutant had reduced levels of SsrA tagging when treated with 5-azacytidine.
Item Open Access Analysis and Error Correction in Structures of Macromolecular Interiors and Interfaces(2009) Headd, Jeffrey JohnAs of late 2009, the Protein Data Bank (PDB) has grown to contain over 70,000 models. This recent increase in the amount of structural data allows for more extensive explication of the governing principles of macromolecular folding and association to complement traditional studies focused on a single molecule or complex. PDB-wide characterization of structural features yields insights that are useful in prediction and validation of the 3D structure of macromolecules and their complexes. Here, these insights lead to a deeper understanding of protein--protein interfaces, full-atom critical assessment of increasingly more accurate structure predictions, a better defined library of RNA backbone conformers for validation and building 3D models, and knowledge-based automatic correction of errors in protein sidechain rotamers.
My study of protein--protein interfaces identifies amino acid pairing preferences in a set of 146 transient interfaces. Using a geometric interface surface definition devoid of arbitrary cutoffs common to previous studies of interface composition, I calculate inter- and intrachain amino acid pairing preferences. As expected, salt-bridges and hydrophobic patches are prevalent, but likelihood correction of observed pairing frequencies reveals some surprising pairing preferences, such as Cys-His interchain pairs and Met-Met intrachain pairs. To complement my statistical observations, I introduce a 2D visualization of the 3D interface surface that can display a variety of interface characteristics, including residue type, atomic distance and backbone/sidechain composition.
My study of protein interiors finds that 3D structure prediction from sequence (as part of the CASP experiment) is very close to full-atom accuracy. Validation of structure prediction should therefore consider all atom positions instead of the traditional Calpha-only evaluation. I introduce six new full-model quality criteria to assess the accuracy of CASP predictions, which demonstrate that groups who use structural knowledge culled from the PDB to inform their prediction protocols produce the most accurate results.
My study of RNA backbone introduces a set of rotamer-like "suite" conformers. Initially hand-identified by the Richardson laboratory, these 7D conformers represent backbone segments that are found to be genuine and favorable. X-ray crystallographers can use backbone conformers for model building in often poor backbone density and in validation after refinement. Increasing amounts of high quality RNA data allow for improved conformer identification, but also complicate hand-curation. I demonstrate that affinity propagation successfully differentiates between two related but distinct suite conformers, and is a useful tool for automated conformer clustering.
My study of protein sidechain rotamers in X-ray structures identifies a class of systematic errors that results in sidechains misfit by approximately 180 degrees. I introduce Autofix, a method for automated detection and correction of such errors. Autofix corrects over 40% of errors for Leu, Thr, and Val residues, and a significant number of Arg residues. On average, Autofix made four corrections per PDB file in 945 X-ray structures. Autofix will be implemented into MolProbity and PHENIX for easy integration into X-ray crystallography workflows.
Item Open Access Biochemical Characterization of Lipid A Modification Enzymes From Rhizobium leguminosarum and Rhizobium etli(2010) Ingram, Brian O'NealThe lipid A component of lipopolysaccharide (LPS) in the nitrogen-fixing plant endosymbionts Rhizobium leguminosarum and Rhizobium etli is strikingly different when compared to that of enteric bacteria such as Escherichia coli. The Rhizobium species produce several unique enzymes that process the lipid A biosynthetic intermediate Kdo2-lipid IVA. These enzymes include a 1-phosphatase (LpxE), a 4´-phosphatase (LpxF), a 3-O-deacylase (PagL), and a lipid A oxidase (LpxQ). The biological functions and enzymological properties of many of the modification enzymes have remained unconfirmed and/or unknown. The purpose of these studies was to confirm the activities of these enzymes and to explore the functional significance of the resulting lipid A modifications.
To confirm the proposed biological functions of the enzymes in vivo, homologs of the lipid A phosphatases, LpxE and LpxF, from Francisella novicida and the lipid A oxidase LpxQ, were expressed heterologously in combination in E. coli. The resulting novel lipid A hybrids were analyzed by thin-layer chromatography (TLC) and electrospray ionization-mass spectrometry (ESI-MS).
The lipid A oxidase LpxQ, was characterized further biochemically. Two new purification procedures and a new in vitro assay were developed to analyze the properties of the enzyme. Purified LpxQ was shown to be dependent on oxygen and divalent cations for activity. Hydrogen peroxide was found to be a product of lipid A oxidation. A new fluorescence-based assay based on the detection of hydrogen peroxide was developed to monitor oxidation. LpxQ did not co-purifiy with any discernable cofactors, suggesting that it may employ a unique mechanism for the oxidation of lipid A.
The biological roles of LpxE and LpxF in plant nodulation were analyzed. Deletion mutants of the two phosphatases were generated in R. etli. The mutant strains accumulated the expected structures, confirming the specificity of the enzymes. Single and double phosphatase mutants were able to fix nitrogen in planta. Antimicrobial susceptibility testing indicated that dephosphorylation of lipid A increases resistance to cationic antimicrobials.
The biological role of the 3-O-deacylase, PagL, was also investigated. The pagL gene was identified using systematic homology searches. PagL was shown to be stimulated by calcium. A deletion mutant of the enzyme in R. etli was constructed and analyzed. The deletion mutant was found to be viable and unaltered in its ability to fix nitrogen. In conclusion, these studies have confirmed the roles of LpxE, LpxF, PagL, and LpxQ in Rhizobium lipid A biosynthesis and contributed new knowledge regarding the biochemical properties of LpxQ.
Item Open Access Biophysical Investigations of Boranophosphate siRNA for Use in RNA Interference against Human Disease(2009) Moussa, LauraThis project is predicated on the ability of the boranophosphate modification of siRNA to increase its therapeutic applicability for gene silencing in in vitro and in vivo systems. It has been shown that the boranophosphate (BH3-PO3) can overcome many of the limitations that are traditionally found when using RNAi, namely nuclease stability. The synthesis of siRNA modified with 5'-(alpha-P-borano)-nucleoside triphosphates (NTP) analogs alone and in combination with 2'-deoxy-2'-fluoro nucleoside triphosphate analogs were performed and optimized. It was found that normal RNA transcriptions showed the highest yield with higher NTP concentrations and shorter incubation times. Boranophosphate modified RNA and 2'F/borano modified RNA transcription yield was optimal at lower NTP concentrations and extended incubations. The boranophosphate NTPs and RNA were characterized with high performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance, indicating successful synthesis of NTPalphaB and 2'F NTPs. PAGE and mass spectrometry analysis were performed to ensure full-length transcription of the modified siRNA molecules. The effects of these modifications were explored with respect to the biophysical properties of the modified homoduplex and heteroduplex siRNA. The techniques used in this work included hybridization affinity assays (melting temperature), secondary structure determination (circular dichroism), nuclease stability assays, and assessment of the lipophilicity of the modified siRNA by determining partition coefficients.
Modification of siRNA with boranophosphate and 2'fluoro/borano modified NTPs appears to have caused the homoduplexes and heteroduplexes to adopt a more B form-like helix that had lower Tm compared to unmodified RNA. The stability of the siRNA transcript to enzymatic hydrolysis by Exonuclease T was on the order of 2'fluoro/borano> normal = boranophosphate. Boranophosphate modification increased the stability of the transcript to enzymatic hydrolysis by the endonuclease RNase A, compared to both normal and 2' fluoro modified siRNA. Overall, the 2' fluoro/borano modified siRNA showed the greatest biological stability. Modification of the siRNA with increasing percentages of boranophosphates resulted in increasing lipophilicity of the molecule up to 60-fold, compared to both normal and 2' fluoro RNA.
A method to site-specifically modify the boranophosphate siRNA using T4 RNA ligase was also investigated. Finally, the siRNA in this work was tested in several in vitro systems, yielding promising results for the usage of boranophosphate siRNA for use against human viruses and cancers. It was shown that in for in vitro systems for human papillomavirus gene expression (HeLa, SiHa, and W12E) and luciferase expression (B16F10 cells), boranophosphate modified siRNA can specifically downregulate gene expression, and in the case of human papillomavirus, can downregulate cell growth.
Item Open Access Characterization of Peripheral-Membrane Enzymes Required for Lipid A Biosynthesis in Gram-Negative Bacteria(2010) Metzger, Louis EugeneGram-negative bacteria possess an asymmetric outer membrane in which the inner leaflet is composed primarily of phospholipids while the outer leaflet contains both phospholipids and lipopolysaccharide (LPS). LPS forms a structural barrier that protects Gram-negative bacteria from antibiotics and other environmental stressors. The lipid A anchor of LPS is a glucosamine-based saccharolipid that is further modified with core and O-antigen sugars. In addition to serving a structural role as the hydrophobic anchor of LPS, lipid A is recognized by the innate immune system in animal cells and macrophages. The enzymes of Lipid A biosynthesis are conserved in Gram-negative bacteria; in most species, a single copy of each bio-synthetic gene is present. The exception is lpxH, which is an essential gene encoding a membrane-associated UDP-2,3-diacylglucosamine hydrolase, which catalyzed the attack of water upon the alpha-phosphate of its substrate and the leaving of UMP, resulting in the formation of lipid X. Many Gram-negatives lack an lpxH orthologue, yet these species must possess an activity analogous to that of LpxH. We used bioinformatics approaches to identify a candidate gene, designated lpxI, encoding this activity in the model organism Caulobacter crescentus. We then demonstrated that lpxI can rescue Escherichia coli deficient in lpxH. Moreover, we have shown that LpxI possesses robust and specific UDP-2,3-diacylglucosamine hydrolase activity in vitro. We have developed high-yield purification schema for Caulobacter crescentus LpxI (CcLpxI) heterologously expressed in E. coli. We crystallized CcLpxI and determined its 2.6 Å x-ray crystal structure in complex with lipid X. CcLpxI, which has no known homologues, consists of two novel domains connected by a linker. Moreover, we have identified a point mutant of CcLpxI which co-purifies with its substrate in a 0.85:1 molar ratio. We have solved the x-ray crystal structure of this mutant to 3.0 Å; preliminary comparison with the product-complexed model reveals striking differences. The findings described herein set the stage for further mechanistic and structural characterization of this novel enzyme.
In this work, we also isolate and characterize LpxB, an essential lipid A biosynthetic gene which is conserved among all Gram-negative bacteria. We purify E. coli and Hemophilus influeznea LpxB to near-homogeneity on a 10 mg scale, and we determine that E. coli LpxB activity is dependent upon the bulk surface concentration of its substrates in a mixed micellar assay system, suggesting that catalysis occurs at the lipid interface. E. coli LpxB partitions with membranes, but this interaction is partially abolished in high-salt conditions, suggesting that a significant component of LpxB's membrane association is ionic in nature. E. coli LpxB (Mr ~ 43 kDa) is a peripheral membrane protein, and we demonstrate that it co-purifies with phospholipids. We estimate, by autoradiography and mass-spectrometry, molar ratios of phospholipids to purified enzyme of 1.6-3.5:1. Transmission electron microscopy reveals the accumulation of intra-cellular membranes when LpxB is massively over-expressed. Alanine-scanning mutagenesis of selected conserved LpxB residues identified two, D89A and R201A, for which no residual catalytic activity is detected. Our data support the hypothesis that LpxB performs catalysis at the cytoplasmic surface of the inner membrane, and provide a rational starting-point for structural studies. This work contributes to knowledge of the small but growing set of structurally and mechanistically characterized enzymes which perform chemistry upon lipids.
Item Open Access Copper at the Interface of Chemistry and Biology: New Insights into hCtr1 Function and the Role of Histidine in Human Cellular Copper Acquisition(2010) Haas, Kathryn LouiseMechanisms of copper homeostasis are of great interest partly due to their connection to debilitating genetic and neurological disorders. The family of high-affinity copper transporters (Ctr) is responsible for extracellular copper acquisition and internalization in yeast, plants, and mammals, including human. The extracellular domain of the human high-affinity copper transporter (hCtr1) contains essential Cu-binding methionine-rich MXXM and MXM (Mets) motifs that are important for copper acquisition and transport. The hCtr1 extracellular domain also contains potential copper binding histidine (His) clusters, including a high-affinity Cu(II) ATCUN site. As of yet, extracellular His clusters have no established significance for hCtr1 function. We have made model peptides based on the extracellular copper acquisition domain of hCtr1 that is rich in His residues and Mets motifs. The peptides' Cu(I) and Cu(II) binding properties have been characterized by UV-Vis and mass spectrometry. Our findings have been extended to a mouse cell model and we show that His residues are important for hCtr1 function likely because of their contribution to strong copper-binding sites in the hCtr1 extracellular domain responsible for copper acquisition.
Copper's pro-oxidant property is also medicinally promising if it can be harnessed to induce oxidative stress as a cancer chemotherapy strategy. Our lab has designed a photocleavable caged copper complex that can selectively release redox-active copper in response to light. The thermodynamic copper binding properties of these potential chemotherapeutics have been characterized
Item Open Access Development and Application of a Mass Spectrometry-Based Assay for the High Throughput Analysis of Protein-Ligand Binding(2009) Hopper, Erin D.Many of the biological roles of proteins are modulated through protein-ligand interactions, making proteins important targets for drug therapies and diagnostic imaging probes. The discovery of novel ligands for a protein of interest often relies on the use of high throughput screening (HTS) technologies designed to detect protein-ligand binding. The basis of one such technology is a recently reported mass spectrometry-based assay termed SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX is a technique that uses H/D exchange and MALDI-mass spectrometry for the measurement of protein stabilities and protein-ligand binding affinities. The single-point SUPREX assay is an abbreviated form of SUPREX that is capable of detecting protein-ligand interactions in a high throughput manner by exploiting the change in protein stability that occurs upon ligand binding.
This work is focused on the development and application of high throughput SUPREX protocols for the detection of protein-ligand binding. The first step in this process was to explore the scope of SUPREX for the analysis of non-two-state proteins to determine whether this large subset of proteins would be amenable to SUPREX analyses. Studies conducted on two model proteins, Bcl-xL and alanine:glyoxylate aminotransferase, indicate that SUPREX can be used to detect and quantify the strength of protein-ligand binding interactions in non-two-state proteins.
The throughput and efficiency of a high throughput SUPREX protocol (i.e., single-point SUPREX) was also evaluated in this work. As part of this evaluation, cyclophilin A, a protein target of diagnostic and therapeutic significance, was screened against the 880-member Prestwick Chemical Library to identify novel ligands that might be useful as therapeutics or imaging agents for lung cancer. This screening not only established the analytical parameters of the assay, but it revealed a limitation of the technique: the efficiency of the assay is highly dependent on the precision of each mass measurement, which generally decreases as protein size increases.
To overcome this limitation and improve the efficiency and generality of the assay, a new SUPREX protocol was developed that incorporated a protease digestion step into the single-point SUPREX protocol. This new protocol was tested on two model proteins, cyclophilin A and alanine:glyoxylate aminotransferase, and was found to result in a significant improvement in the efficiency of the SUPREX assay in HTS applications. This body of work resulted in advancements in the use of SUPREX for high throughput applications and laid the groundwork for future HTS campaigns on target proteins of medical significance.
Item Open Access In Vivo Analysis of the Consequences and the Repair Mechanisms of Azacytidine-Induced DNA-Protein Crosslinks(2009) Kuo, Hung-Chieh Kenny5-azacytidine and its derivatives are cytidine analogs used for leukemia chemotherapy. The primary effect of 5-azacytidine is the prohibition of cytosine methylation, which results in covalent DNA-methyltransferase crosslinks at cytosine methylation sites. These DNA-protein crosslinks have been suggested to cause chromosomal rearrangements and contribute to cytotoxicity, but the detailed mechanisms of DNA damage and the repair pathways of DNA-protein crosslinks have not been elucidated.
We used 2-dimensional agarose gel electrophoresis and electron microscopy to analyze plasmid pBR322 replication dynamics in Escherichia coli cells grown in the presence of 5-azacytidine. 2-dimensional gel analysis revealed the accumulation of specific bubble- and Y-molecules, dependent on overproduction of the cytosine methyltransferase EcoRII and treatment with 5-azacytidine. Furthermore, a point mutation that eliminates a particular EcoRII methylation site resulted in disappearance of the corresponding bubble- and Y-molecules. These results imply that 5-azacytidine-induced DNA-protein crosslinks block DNA replication in vivo. RecA-dependent X-structures were also observed after 5-azacytidine treatment. These molecules may be generated from blocked forks by recombinational repair and/or replication fork regression. In addition, electron microscopy analysis revealed both bubbles and rolling circles after 5-azacytidine treatment. These results suggest that replication can switch from theta to rolling circle mode after a replication fork is stalled by a DNA-methyltransferase crosslink. The simplest model for the conversion of theta to rolling-circle mode is that the blocked replication fork is cleaved by a branch-specific endonuclease. Such replication-dependent DNA breaks may represent an important pathway that contributes to genome rearrangement and/or cytotoxicity.
In addition, we performed a transposon mutagenesis screen and found that mutants defective in the tmRNA translational quality control system are hypersensitive to 5-azacytidine. The hypersensitivity of these mutants requires expression of active methyltransferase, indicating that hypersensitivity is dependent on DNA-methyltransferase crosslink formation. Furthermore, the tmRNA pathway is activated upon 5-azacytidine treatment in cells expressing methyltransferase, resulting in increased SsrA tagging of cellular proteins. These results support a "chain-reaction" model, in which transcription complexes blocked by 5-azacytidine-induced DNA-protein crosslinks result in ribosomes stalling on the attached nascent transcripts, and the tmRNA pathway is invoked for cleaning up the resulting pile-ups. In support of this model, an ssrA mutant is also hypersensitive to antibiotic streptolydigin, which blocks RNA polymerase elongation. These results reveal a novel role for the tmRNA system in clearance of coupled transcription/translation complexes in which RNA polymerase has become blocked.
Item Open Access Interactions of the MetJ Repressor from E. Coli with DNA and SAM(2009) Augustus, Anne MarieTranscription regulators are proteins that bind to specific DNA sequences in order to control the expression of specific genes. Often the sequences that are bound are not identical, but contain deviations from a common "consensus" sequence. The proteins that recognize these non-consensus sites must be able to recognize a variety of related sequences. MetJ is the transcription regulator that controls the expression of genes involved in methionine biosynthesis and transport in E. coli and other related organisms. A consensus sequence is known, but almost all the naturally occurring binding sites for MetJ differ from this. The goal of this dissertation is to understand how MetJ recognizes its various target sites within the context of the genomic DNA in which they are embedded. This work uses a variety of biochemical and biophysical techniques to further our understanding of an important regulatory protein.
Chapter 2 describes the results of both in cell and in vitro NMR showing that MetJ associates with non-specific genomic DNA in the cell, and that specific DNA (containing the consensus sequence) can successfully compete with a large excess of non-specific DNA for MetJ binding.
Chapter 3 describes work performed with small-angle neutron scattering showing different modes of MetJ binding to DNA of variable length and sequence.
Chapter 4 extends the neutron-scattering results by using analytical ultracentrifugation to look at MetJ binding to a wide variety of DNA sequences, both in the presence and absence of its co-factor, S- adenosylmethionine (SAM). Evidence is presented for SAM-mediated binding to both specific and non-specific DNA, as well as the importance of cooperativity in binding multiple MetJ molecules to a single DNA.
Item Open Access Ligand Bias by the Endogenous Agonists of CCR7(2009) Zidar, David AlexanderChemokine receptors are members of the seven transmembrane receptor (7TMR) superfamily and are regulated by the G-protein coupled Receptor Kinase (GRK)/ b-arrestin system. CCL19 and CCL21 are endogenous agonists for the chemokine receptor CCR7. They are known to be equipotent in promoting Gi/o mediated calcium mobilization, chemotaxis and inhibition of adenylyl cyclase activity. Here we test the hypothesis that these ligands are biased agonists that differentially activate the G-protein coupled Receptor Kinase (GRK)/ b-arrestin system.
In order to test whether these ligands have distinct activity, murine T lymphocytes were used to compare the effects of CCL19 and CCL21 activation of CCR7 at endogenous expression levels. While each ligand stimulates similar chemotactic responses, we also find that CCR7 ligands lead to differential signaling. For instance, CCL19 is markedly more efficacious than CCL21 for the activation of ERK and JNK, but not AKT in these cells. Furthermore, ERK activation and chemotaxis are maintained as separate pathways, also distinguishable by their dependency upon PKC and PI3 kinase, respectively. Thus, CCL19 and CCL21 stimulate equal activation of PI3 kinase, AKT, and chemotaxis, but are in fact biased agonists leading to differential activation of MAP kinase in murine T lymphocytes.
To determine the mechanism of CCR7 ligand bias, we used HEK-293 cells expressing CCR7 to compare the proximate signaling events following CCL19 and CCL21 activation. We found striking differences in the activation of the GRK/ b-arrestin system. CCL19 leads to robust CCR7 phosphorylation and b-arrestin2 recruitment catalyzed by both GRK3 and GRK6 while CCL21 activates GRK6 alone. This differential GRK activation leads to distinct functional consequences. Only CCL19 leads to the recruitment of b-arrestin2-GFP into endocytic vesicles and classical receptor desensitization. In contrast, each agonist is fully capable of signaling to MAP kinase through b-arrestin2 in a GRK6 dependent fashion.
Therefore, CCR7 and its ligands represent a natural example of ligand bias whose mechanism involves differential GRK isoform utilization by CCL19 and CCL21 despite similar G-protein signaling. This study suggests that the GRK signatures of 7TMRs can determine the function of discrete pools of b-arrestin and thus guide its cellular effects.
Item Open Access Molecular Bioengineering: From Protein Stability to Population Suicide(2010) Marguet, Philippe RobertDriven by the development of new technologies and an ever expanding knowledge base of molecular and cellular function, Biology is rapidly gaining the potential to develop into a veritable engineering discipline - the so-called `era of synthetic biology' is upon us. Designing biological systems is advantageous because the engineer can leverage existing capacity for self-replication, elaborate chemistry, and dynamic information processing. On the other hand these functions are complex, highly intertwined, and in most cases, remain incompletely understood. Brazenly designing within these systems, despite large gaps in understanding, engenders understanding because the design process itself highlights gaps and discredits false assumptions.
Here we cover results from design projects that span several scales of complexity. First we describe the adaptation and experimental validation of protein functional assays on minute amounts of material. This work enables the application of cell-free protein expression tools in a high-throughput protein engineering pipeline, dramatically increasing turnaround time and reducing costs. The parts production pipeline can provide new building blocks for synthetic biology efforts with unprecedented speed. Tools to streamline the transition from the in vitro pipeline to conventional cloning were also developed. Next we detail an effort to expand the scope of a cysteine reactivity assay for generating information-rich datasets on protein stability and unfolding kinetics. We go on to demonstrate how the degree of site-specific local unfolding can also be determined by this method. This knowledge will be critical to understanding how proteins behave in the cellular context, particularly with regards to covalent modification reactions. Finally, we present results from an effort to engineer bacterial cell suicide in a population-dependent manner, and show how an underappreciated facet of plasmid physiology can produce complex oscillatory dynamics. This work is a prime example of engineering towards understanding.
Item Open Access Molecular Computing with DNA Self-Assembly(2009) Majumder, UrmiSynthetic biology is an emerging technology field whose goal is to use biology as a substrate for engineering. Self-assembly is one of the many methods for fabricating such synthetic biosystems.
Self-assembly is a process where components spontaneously arrange themselves into organized aggregates by the selective affinity of substructures. DNA is an excellent candidate for making synthetic biological systems using self-assembly because of its modular structure and simple chemistry. This thesis describes several
techniques which use DNA as a nano-construction material and
explores the computational capabilities of DNA self-assembly.
For this dissertation, I set out to build a biomolecular computing device with several
useful properties, including compactness, robustness, high degrees of complexity, flexibility, scalability and easily characterized yields
and convergence rates. However, a unified device that satisfies all these properties is still many years away. Instead, this thesis presents designs, simulations,
and experimental results for several distinct DNA nano-systems, as
well as experimental protocols, each of which satisfies a subset of the above-mentioned properties. The hope is that the lessons learned from building all these biomolecular computational devices would bring us closer to our ultimate goal and would eventually pave the path for a computing device that satisfies all the properties. We experimentally demonstrate how we can reduce errors in tiling assembly using an optimized set of physical parameters. We propose a novel DNA tile design
which enforces directionality of growth, reducing assembly errors. We build simulation models to characterize damage in fragile nanostructures under the impact of various external forces. Furthermore, we investigate reversible computation as a means to provide self-repairability to such damaged structures.
We suggest two modifications of an existing DNA computing device,
called Whiplash PCR machine, which allow it to operate robustly outside of controlled laboratory conditions and allow it to implement a simple form of inter-device communication. We present analysis techniques which characterize the yields and time convergence of self-assembled DNA nanostructures. We also present an experimental demonstration of a novel DNA nanostructure which is capable of tiling the plane and could prove to be a way of building 3D DNA assemblies.
Item Open Access Nitric Oxide in Health and Disease: Physiology, Pathophysiology, and Clinical Measurement(2008-12-11) Angelo, Robert MichaelRed blood cell-dependent hypoxic vasodilation is largely mediated via the delivery of NO through S-nitrosohemoglobin (Hb-SNO). Hb-SNO is regulated through allosteric and redox mechanisms that are not well understood. Part One of this dissertation explores the biochemical features of Hb micropopulations suggested to be involved in Hb-SNO synthesis. An NO-liganded mixed valency micropopulation was synthesized in vitro and identified spectroscopically as a ferric nitrosyl species (Fe(III)NO). Remarkably, this species was found to undergo a reaction that couples heme reduction and S-nitrosylation of β93C. The biochemical properties of this species were found to resemble those of Hb valency hybrids (VHy's) identified by others in previous work. The similarities between the two species are discussed, and a model for Hb-SNO formation, including the putative identification of the intermediates involved, is proposed. Part Two explores the insights provided by this chemistry as it is relevant to human pathophysiology in the context of Hb-SNO depletion of RBCs in stored blood. Hb-SNO and membrane S-nitrosothiols were found to be depleted after only two days of storage. The vasoactive function of stored RBCs has been shown in previous work to be impaired relative to controls. These findings, in conjunction with the this study, could implicate NO dysregulation as a primary component in the etiology of hypoxic diseases and the negative sequelae associated with blood transfusions. The results from Part Two suggest that NO blood gas measurements could serve an important role in improving clinical outcome of patients with hypoxic diseases. The goal of the work presented in Part Three is to begin to address this emerging need by developing an economical and pragmatic sensor platform for routine clinical use in both an outpatient and inpatient setting.
Item Open Access NMR Structure Improvement: A Structural Bioinformatics & Visualization Approach(2010) Block, JeremyThe overall goal of this project is to enhance the physical accuracy of individual models in macromolecular NMR (Nuclear Magnetic Resonance) structures and the realism of variation within NMR ensembles of models, while improving agreement with the experimental data. A secondary overall goal is to combine synergistically the best aspects of NMR and crystallographic methodologies to better illuminate the underlying joint molecular reality. This is accomplished by using the powerful method of all-atom contact analysis (describing detailed sterics between atoms, including hydrogens); new graphical representations and interactive tools in 3D and virtual reality; and structural bioinformatics approaches to the expanded and enhanced data now available.
The resulting better descriptions of macromolecular structure and its dynamic variation enhances the effectiveness of the many biomedical applications that depend on detailed molecular structure, such as mutational analysis, homology modeling, molecular simulations, protein design, and drug design.
Item Open Access Protein Engineering for Biosensor Development(2008-11-24) Miklos, AleksandrBiosensors incorporating proteins as molecular recognition elements for analytes are used in clinical diagnostics, as biological research tools, and to detect chemical threats and pollutants. This work describes the application of protein engineering techniques to address three aspects in the design of protein-based biosensors; the transduction of binding into an observable, the manipulation of affinities, and the diversification of specificities. The periplasmic glucose-binding protein from the hyperthermophile Thermotoga maritima (tmGBP) was fused with green fluorescent protein variants to construct a fluorescent ratiometric sensor that is sufficiently robust to detect glucose up to 67°C. Ligand-binding affinities of tmGBP were changed by altering a C-terminal helical domain that tunes ligand binding affinity through conformational coupling effects. This method was extended to the Escherichia coli arabinose-binding protein. Computational design techniques were used to diversify the specificity of the E. coli maltose-binding protein (ecMBP) to bind ibuprofen, a non-steroidal antiinflammatory drug. These designs ranged in affinity from 0.24 to 0.8 mM and function as reagentless fluorescent sensors. The ligand affinities of ecMBP are tuned by complex interactions that control conformational coupling. These experiments demonstrate that long-range conformational effects as well as molecular recognition interactions need to be considered in the design of high-affinity receptors.
Item Open Access Protein S-nitrosylation: Methods of Detection and Regulation(2009) Forrester, Michael T.Protein S-nitrosylation--the post-translational modification of cysteine thiols into S-nitrosothiols--is a principle mechanism of nitric oxide-based signaling. Studies have demonstrated myriad roles for S-nitrosylation in organisms from bacteria to humans, and recent efforts have greatly advanced our scientific understanding of how this redox-based modification is dynamically regulated during physiological and pathophysiological conditions. This doctoral thesis is focused on the 1) analysis of existing methodologies for the detection of protein S-nitrosylation; 2) development of new methodologies for the detection of protein S-nitrosylation and 3) discovery of novel enzymatic mechanisms by which S-nitrosylation is regulated in vivo. The specificity of the biotin switch technique, the mainstay assay for detecting S-nitrosylation, was rigorously assessed and validated. This study was paramount as a response to several published (though poorly grounded) criticisms of the biotin switch technique. Separately presented is a unique resin-based assay for proteomic analysis of S-nitrosylation (dubbed "SNO-RAC"), which is combined with mass spectrometric tools to identify sites of S-nitrosylation in several cellular models (e.g. E. coli, mammalian cells). Other data presented herein demonstrate that the thioredoxin system is regulated, in a negative feedback manner, to control S-nitrosylation and prevent nitrosative stress. This system involves nitric oxide-dependent suppression of an established thioredoxin inhibitor, the thioredoxin interacting protein (Txnip). This, in turn, affords thioredoxin an optimal environment to drive protein denitrosylation and prevent nitrosative stress secondary to endogenous nitric oxide production.
Item Open Access RNA Backbone Rotamers and Chiropraxis(2007-07-25) Murray, Laura WestonRNA backbone is biologically important with many roles in reactions and interactions, but has historically been a challenge in structural determination. It has many atoms and torsions to place, and often there is less data on it than one might wish. This problem leads to both random and systematic error, producing noise in an already high-dimensional and complex distribution to further complicate data-driven analysis. With the advent of the ribosomal subunit structures published in 2000, large RNA structures at good resolution, it became possible to apply the Richardson laboratory's quality-filtering, visualization, and analysis techniques to RNA and develop new tools for RNA as well. A first set of 42 RNA backbone rotamers was identified, developed, and published in 2003; it has since been thoroughly overhauled in conjunction with the backbone group of the RNA Ontology Consortium to combine the strengths of different approaches, incorporate new data, and produce a consensus set of 46 conformers. Meanwhile, extensive work has taken place on developing validation and remodeling tools to correct and improve existing structures as well as to assist in initial fitting. The use of base-phosphate perpendicular distances to identify sugar pucker has proven very useful in both hand-refitting and the semi-automated process of using RNABC (RNA Backbone Correction), a program developed in conjunction with Dr. Jack Snoeyink's laboratory. The guanine riboswitch structure ur0039/1U8D, by Dr. Rob Batey's laboratory, has been collaboratively refit and rerefined as a successful test case of the utility of these tools and techniques. Their testing and development will continue, and they are expected to help to improve RNA structure determination in both ease and quality.Item Open Access Structural Biochemistry and Inhibition of CaaX Protein Prenyltransferases From Human Pathogens(2010) Hast, Michael AlanProtein prenylation is a post-translational lipid modification required for proper function by over 100 proteins in the eukaryotic cell. Proteins that receive this modification mediate a wide variety of functions in the cell, including critical signal transduction events. A family of structurally-related protein prenyltransferase enzymes carry out this reaction: protein farnesyltransferase (FTase), protein geranylgeranyltransferase-I (GGTase-I) and Rab geranylgeranyltransferase (GGTase-II or Rab GGTase). The focus of this dissertation will be on CaaX protein prenyltransferases, FTase and GGTase-I, which recognize a defined C-terminal motif on substrate proteins: cysteine (C), followed by two generally aliphatic amino acids (aa) and a variable (X) residue.
Protein farnesyltransferase (FTase) catalyzes the addition of a 15-carbon isoprenoid lipid to certain CaaX proteins, while protein geranylgeranyltransferase-I catalyzes the addition of a 20-carbon lipid. FTase and GGTase-I have been shown to be important drug targets in the fight against cancer, as many of the prenylated signal transduction proteins play significant roles in oncogenesis. More recently, protein prenyltransferases have been identified in human pathogens, and these orthologs also show promise as drug targets for treating infectious diseases. The research in this dissertation seeks to understand the structural biochemistry and mechanisms inhibition of protein prenyltransferase orthologs from human pathogens.
Molecular cloning techniques, biochemical assays, and macromolecular X-ray crystallography are employed to express recombinant proteins and study their structure and function. In this work I present the first X-ray structures of non-mammalian protein prenyltransferases, including the FTases from Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans ; as well as the GGTase-I from Candida albicans. These structures reveal regions of the active sites that diverge sufficiently from mammalian orthologs that selective inhibitors to treat infectious diseases may be developed. In addition, I present the crystal structures of a novel series of FTase inhibitors bound to both mammalian FTase and C. neoformans FTase. The structures of these ethylenediamine-scaffold inhibitors reveal dominant determinants of inhibitor binding, as well as ways that the inhibitors could be modified to bind the FTases from multiple human pathogens. Taken together, the data presented in this dissertation advance our understanding of the structural biology of protein prenyltransferases across multiple species, and these data can be exploited to develop novel treatments for infectious diseases.
Item Open Access Structural Determinants of Post-transcriptional Protein Regulation as Modulators of Monoamine Signaling(2008-06-23) Murphy, KarenMonoamines were first discovered at the end of the 19th century when William Bates identified epinephrine (EPI) and noted its hemostatic effects. During the 20th century, norepinephrine (NE), dopamine (DA), and serotonin (5HT) were discovered in both the periphery and the brain. Due, in part, to the implication of monoamines in the etiology of a wide range of dysfunctions, the examination of their physiological functions became the subject of a considerable volume of research. Much progress has been made in describing the function and endogenous regulation of these systems, as well as their response to pharmacological intervention. However, many aspects of these systems remain unexplored. For example, though the role of pharmacological agents in regulating monoamine transporter function has been widely studied, relatively little is known about basal regulation in terms of protein processing and targeting. Similarly, the role of phosphorylation has been well characterized in the regulation of tyrosine hydroxylase (TH), but little is known about the regulation of the closely related tryptophan hydroxylases. The recent discovery of the second isoform of tryptophan hydroxylase (TPH2) has brought renewed interest to this field as the majority of this second isoform is centrally expressed and it contains an additional 41 amino acids at the N-terminus compared to TPH1, the peripheral enzyme. To increase the understanding of these aspects of monoamine signaling, this study characterizes the regulatory role played by the extended N-terminus of TPH2 using mutagenesis and cell culture systems and identifies determinants of monoamine transporter targeting and processing using the dopamine transporter (DAT) as a model. In chapter 2, we demonstrate that TPH2 is synthesized less efficiently and is also less stable than TPH1 when expressed in cultured cells. Furthermore, we identify a region centered upon amino acids 10-20 in TPH2 that appears responsible for the bulk of this difference. We also demonstrate here that phosphorylation of S19 in TPH2 results in increased TPH2 stability, and a consequent increase in 5HT production. Because this domain is unique to TPH2, these data provide evidence for selective regulation of brain 5HT synthesis. Based on measured uptake capacity and both visual and biochemical markers of protein localization, the results presented in chapter 3 suggest that a conserved YAAY motif in the C-tail of the monoamine transporters is essential for normal levels of membrane expression. We also demonstrate that disruption of this sequence interferes to some extent with the previously described hDAT/Hic-5 interaction. Together, the data presented here contribute to the understanding of the physiological regulation of brain monoaminergic signaling.