Browsing by Subject "Chemokine CXCL12"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Effects of Lipopolysaccharide on Human First Trimester Villous Cytotrophoblast Cell Function In Vitro.(Biology of reproduction, 2016-02) Li, Liping; Tu, Jiaoqin; Jiang, Yao; Zhou, Jie; Yabe, Shinichiro; Schust, Danny JIt has been shown that adverse obstetrical outcomes such as pre-eclampsia and intrauterine growth retardation correlate with maternal infection. In this study, we investigated mechanisms involved in infection-associated abnormalities in cytotrophoblast function. Primary human first trimester cytotrophoblast cells were isolated and treated with lipopolysaccharide (LPS). Levels of the cytokines and chemokines were measured and cytotrophoblast invasion was investigated. In addition, first trimester decidual macrophages were isolated and treated with the conditioned medium from LPS-treated cytotrophoblast cells, and macrophage migration was assessed. Coculturing decidual macrophages with cytotrophoblast cells was conducted to investigate macrophage costimulatory molecule and receptor expression and intracellular cytokine production. We found that LPS exposure increased cytotrophoblast production of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, and chemokines IL-8, macrophage inflammatory protein (MIP)-1alpha, and CXCL12 in a dose-dependent manner. In addition, LPS decreased cytotrophoblast invasion, and its effect was Toll-like receptor 4 (TLR4)-dependent and partly TNF-alpha-dependent. Conditioned medium from LPS-stimulated cytotrophoblast cells increased decidual macrophage migration and this effect was partly TLR4-dependent. Furthermore, coculturing decidual macrophages with LPS-exposed cytotrophoblast cells up-regulated macrophage CD80 and CD86 expression and intracellular TNF-alpha and IL-12p40 production, while down-regulating macrophage CD206 and CD209 expression and intracellular IL-10 secretion. LPS-stimulated macrophages also inhibited cytotrophoblast invasion. In conclusion, our results indicate that LPS increases the production of a subset of proinflammatory cytokines and chemokines by human first trimester cytotrophoblast cells, decreases cytotrophoblast invasion, and alters the cross talk between cytotrophoblast cells and decidual macrophages.Item Open Access Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow.(J Exp Med, 2005-06-06) Ueda, Yoshihiro; Kondo, Motonari; Kelsoe, GarnettThe coordinated production of leukocytes in bone marrow is crucial for innate and adaptive immunity. Inflammation alters normal leukocyte production by promoting granulopoiesis over lymphopoiesis, a response that supports the reactive neutrophilia that follows infection. Here we demonstrate that this specialization for granulopoiesis is determined by inflammation-induced reductions of growth and retention factors, most significantly stem cell factor and CXCL12, which act preferentially to inhibit lymphoid development. These hierarchical effects suggest that the normal equilibrium of leukocyte production in bone marrow is determined by lymphopoiesis' higher demand for specific growth factors and/or retention signals. Inflammation regulates this balance by reducing growth factors that have less impact on developing neutrophils than lymphocytes. We demonstrate that granulopoiesis and lymphopoiesis are coupled specifically in the bone marrow by development in a common niche and propose that the leukopoietic equilibrium is specified by limiting amounts of developmental resources.Item Open Access Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression.(J Exp Med, 2004-01-05) Ueda, Yoshihiro; Yang, Kaiyong; Foster, Sandra J; Kondo, Motonari; Kelsoe, GarnettInflammation removes developing and mature lymphocytes from the bone marrow (BM) and induces the appearance of developing B cells in the spleen. BM granulocyte numbers increase after lymphocyte reductions to support a reactive granulocytosis. Here, we demonstrate that inflammation, acting primarily through tumor necrosis factor alpha (TNFalpha), mobilizes BM lymphocytes. Mobilization reflects a reduced CXCL12 message and protein in BM and changes to the BM environment that prevents homing by cells from naive donors. The effects of TNFalpha are potentiated by interleukin 1 beta (IL-1beta), which acts primarily to expand the BM granulocyte compartment. Our observations indicate that inflammation induces lymphocyte mobilization by suppressing CXCL12 retention signals in BM, which, in turn, increases the ability of IL-1beta to expand the BM granulocyte compartment. Consistent with this idea, lymphocyte mobilization and a modest expansion of BM granulocyte numbers follow injections of pertussis toxin. We propose that TNFalpha and IL-1beta transiently specialize the BM to support acute granulocytic responses and consequently promote extramedullary lymphopoiesis.Item Open Access Plerixafor (a CXCR4 antagonist) following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery.(J Hematol Oncol, 2018-03-04) Green, Michael MB; Chao, Nelson; Chhabra, Saurabh; Corbet, Kelly; Gasparetto, Cristina; Horwitz, Ari; Li, Zhiguo; Venkata, Jagadish Kummetha; Long, Gwynn; Mims, Alice; Rizzieri, David; Sarantopoulos, Stefanie; Stuart, Robert; Sung, Anthony D; Sullivan, Keith M; Costa, Luciano; Horwitz, Mitchell; Kang, YubinBACKGROUND: The binding of CXCR4 with its ligand (stromal-derived factor-1) maintains hematopoietic stem/progenitor cells (HSPCs) in a quiescent state. We hypothesized that blocking CXCR4/SDF-1 interaction after hematopoietic stem cell transplantation (HSCT) promotes hematopoiesis by inducing HSC proliferation. METHODS: We conducted a phase I/II trial of plerixafor on hematopoietic cell recovery following myeloablative allogeneic HSCT. Patients with hematologic malignancies receiving myeloablative conditioning were enrolled. Plerixafor 240 μg/kg was administered subcutaneously every other day beginning day +2 until day +21 or until neutrophil recovery. The primary efficacy endpoints of the study were time to absolute neutrophil count >500/μl and platelet count >20,000/μl. The cumulative incidence of neutrophil and platelet engraftment of the study cohort was compared to that of a cohort of 95 allogeneic peripheral blood stem cell transplant recipients treated during the same period of time and who received similar conditioning and graft-versus-host disease prophylaxis. RESULTS: Thirty patients received plerixafor following peripheral blood stem cell (n = 28) (PBSC) or bone marrow (n = 2) transplantation. Adverse events attributable to plerixafor were mild and indistinguishable from effects of conditioning. The kinetics of neutrophil and platelet engraftment, as demonstrated by cumulative incidence, from the 28 study subjects receiving PBSC showed faster neutrophil (p = 0.04) and platelet recovery >20 K (p = 0.04) compared to the controls. CONCLUSIONS: Our study demonstrated that plerixafor can be given safely following myeloablative HSCT. It provides proof of principle that blocking CXCR4 after HSCT enhances hematopoietic recovery. Larger, confirmatory studies in other settings are warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT01280955.