Browsing by Subject "Chimpanzee"
- Results Per Page
- Sort Options
Item Open Access Dispersal and Integration in Female Chimpanzees(2015) Walker, Kara KristinaIn chimpanzees, most females disperse from the community in which they were born to reproduce in a new community, thereby eliminating the risk of inbreeding with close kin. However, across sites, some females breed in their natal community, raising questions about the flexibility of dispersal, the costs and benefits of different strategies and the mitigation of costs associated with dispersal and integration. In this dissertation I address these questions by combining long-term behavioral data and recent field observations on maturing and young adult females in Gombe National Park with an experimental manipulation of relationship formation in captive apes in the Congo.
To assess the risk of inbreeding for females who do and do not disperse, 129 chimpanzees were genotyped and relatedness between each dyad was calculated. Natal females were more closely related to adult community males than were immigrant females. By examining the parentage of 58 surviving offspring, I found that natal females were not more related to the sires of their offspring than were immigrant females, despite three instances of close inbreeding. The sires of all offspring were less related to the mothers than non-sires regardless of the mother’s residence status. These results suggest that chimpanzees are capable of detecting relatedness and that, even when remaining natal, females can largely avoid, though not eliminate, inbreeding.
Next, I examined whether dispersal was associated with energetic, social, physiological and/or reproductive costs by comparing immigrant (n=10) and natal (n=9) females of similar age using 2358 hours of observational data. Natal and immigrant females did not differ in any energetic metric. Immigrant females received aggression from resident females more frequently than natal females. Immigrants spent less time in social grooming and more time self-grooming than natal females. Immigrant females primarily associated with resident males, had more social partners and lacked close social allies. There was no difference in levels of fecal glucocorticoid metabolites in immigrant and natal females. Immigrant females gave birth 2.5 years later than natal females, though the survival of their first offspring did not differ. These results indicate that immigrant females in Gombe National Park do not face energetic deficits upon transfer, but they do enter a hostile social environment and have a delayed first birth.
Next, I examined whether chimpanzees use condition- and phenotype-dependent cues in making dispersal decisions. I examined the effect of social and environmental conditions present at the time females of known age matured (n=25) on the females’ dispersal decisions. Females were more likely to disperse if they had more male maternal relatives and thus, a high risk of inbreeding. Females with a high ranking mother and multiple maternal female kin tended to disperse less frequently, suggesting that a strong female kin network provides benefits to the maturing daughter. Females were also somewhat less likely to disperse when fewer unrelated males were present in the group. Habitat quality and intrasexual competition did not affect dispersal decisions. Using a larger sample of 62 females observed as adults in Gombe, I also detected an effect of phenotypic differences in personality on the female’s dispersal decisions; extraverted, agreeable and open females were less likely to disperse.
Natural observations show that apes use grooming and play as social currency, but no experimental manipulations have been carried out to measure the effects of these behaviors on relationship formation, an essential component of integration. Thirty chimpanzees and 25 bonobos were given a choice between an unfamiliar human who had recently groomed or played with them over one who did not. Both species showed a preference for the human that had interacted with them, though the effect was driven by males. These results support the idea that grooming and play act as social currency in great apes that can rapidly shape social relationships between unfamiliar individuals. Further investigation is needed to elucidate the use of social currency in female apes.
I conclude that dispersal in female chimpanzees is flexible and the balance of costs and benefits varies for each individual. Females likely take into account social cues present at maturity and their own phenotype in choosing a settlement path and are especially sensitive to the presence of maternal male kin. The primary cost associated with philopatry is inbreeding risk and the primary cost associated with dispersal is delay in the age at first birth, presumably resulting from intense social competition. Finally, apes may strategically make use of affiliative behavior in pursuing particular relationships, something that should be useful in the integration process.
Item Open Access Social Decision-Making in Bonobos and Chimpanzees(2016) Krupenye, ChristopherHumans are natural politicians. We obsessively collect social information that is both observable (e.g., about third-party relationships) and unobservable (e.g., about others’ psychological states), and we strategically employ that information to manage our cooperative and competitive relationships. To what extent are these abilities unique to our species, and how did they evolve? The present dissertation seeks to contribute to these two questions. To do so, I take a comparative perspective, investigating social decision-making in humans’ closest living relatives, bonobos and chimpanzees. In Chapter 1, I review existing literature on theory of mind—or the ability to understand others’ psychological states—in these species. I also present a theoretical framework to guide further investigation of social cognition in bonobos and chimpanzees based on hypotheses about the proximate and ultimate origins of their species differences. In Chapter 2, I experimentally investigate differences in the prosocial behavior of bonobos and chimpanzees, revealing species-specific prosocial motivations that appear to be less flexible than those exhibited by humans. In Chapter 3, I explore through decision-making experiments bonobos’ ability to evaluate others based on their prosocial or antisocial behavior during third-party interactions. Bonobos do track the interactions of third-parties and evaluate actors based on these interactions. However, they do not exhibit the human preference for those who are prosocial towards others, instead consistently favoring an antisocial individual. The motivation to prefer those who demonstrate a prosocial disposition may be a unique feature of human psychology that contributes to our ultra-cooperative nature. In Chapter 4, I investigate the adaptive value of social cognition in wild primates. I show that the recruitment behavior of wild chimpanzees at Gombe National Park, Tanzania is consistent with the use of third-party knowledge, and that those who appear to use third-party knowledge receive immediate proximate benefits. They escape further aggression from their opponents. These findings directly support the social intelligence hypothesis that social cognition has evolved in response to the demands of competing with one’s own group-mates. Thus, the studies presented here help to better characterize the features of social decision-making that are unique to humans, and how these abilities evolved.
Item Open Access The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences.(Journal of human evolution, 2021-02-09) Staes, Nicky; Guevara, Elaine E; Helsen, Philippe; Eens, Marcel; Stevens, Jeroen MGHumans have unique cognitive capacities that, compared with apes, are not only simply expressed as a higher level of general intelligence, but also as a quantitative difference in sociocognitive skills. Humans' closest living relatives, bonobos (Pan paniscus), and chimpanzees (Pan troglodytes), show key between-species differences in social cognition despite their close phylogenetic relatedness, with bonobos arguably showing greater similarities to humans. To better understand the evolution of these traits, we investigate the neurochemical mechanisms underlying sociocognitive skills by focusing on variation in genes encoding proteins with well-documented roles in mammalian social cognition: the receptors for vasopressin (AVPR1A), oxytocin (OXTR), serotonin (HTR1A), and dopamine (DRD2). Although these genes have been well studied in humans, little is known about variation in these genes that may underlie differences in social behavior and cognition in apes. We comparatively analyzed sequence data for 33 bonobos and 57 chimpanzees, together with orthologous sequence data for other apes. In all four genes, we describe genetic variants that alter the amino acid sequence of the respective receptors, raising the possibility that ligand binding or signal transduction may be impacted. Overall, bonobos show 57% more fixed substitutions than chimpanzees compared with the ancestral Pan lineage. Chimpanzees, show 31% more polymorphic coding variation, in line with their larger historical effective population size estimates and current wider distribution. An extensive literature review comparing allelic changes in Pan with known human behavioral variants revealed evidence of homologous evolution in bonobos and humans (OXTR rs4686301(T) and rs237897(A)), while humans and chimpanzees shared OXTR rs2228485(A), DRD2 rs6277(A), and DRD2 rs11214613(A) to the exclusion of bonobos. Our results offer the first in-depth comparison of neurochemical receptor gene variation in Pan and put forward new variants for future behavior-genotype association studies in apes, which can increase our understanding of the evolution of social cognition in modern humans.Item Open Access The Social and Reproductive Behavior of Male Chimpanzees in Gombe National Park, Tanzania(2017) Feldblum, Joseph T.This dissertation presents three studies of the social and reproductive behavior and social structure of male chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania.
I. In many species of non-human primates, males cooperate and form friendly social bonds while simultaneously competing with each other for dominance rank and mating opportunities. While several studies reveal clear links between female bonds and correlates of fitness in female philopatric primate species, few have investigated whether bonds among males have measurable fitness benefits. Further, no studies in chimpanzees have investigated the fitness effects of cooperative exchange, or contrasted the fitness effects of bond formation and cooperative exchange. Here, I investigate whether 1) male social bonds, 2) position in affiliative and coalition networks, or 3) strategic exchange with other individuals of grooming for support or tolerance facilitate fitness benefits in one population of wild, free-ranging chimpanzees. I generated measures of social connectedness, coalition formation, and grooming effort for each male in two-year periods from 1990 to 2011, and employed mixed models to determine whether, controlling for current rank and age, these measures predicted 1) rank change (a correlate of future reproductive output) and 2) reproductive success within each period. I found that rank change was associated with betweenness in the network of coalition formation, but only weakly with social bonds and not at all with position in the network of social relationships. I further found that rank change was predicted by grooming effort, although this relationship depended on male dominance rank. Surprisingly, reproductive success was not associated with social connectedness or with betweenness in coalitionary or social relationship networks. Instead, grooming effort strongly predicted reproductive success. Thus it appears that males that occupy central positions in the coalition network, and those that groom others at a high rate, are more likely to rise in rank (if they are low-ranking to begin with). However, males that successfully sire offspring groom others at a high rate. These results suggest that, unlike in cercopithecine primates, social bonds do not enhance fitness in male chimpanzees, and instead males rely on grooming and coalition formation to improve their rank and reproductive success.
II. Animals face both costs and benefits associated with living in groups. When the costs of membership exceed the benefits, group fissions can occur. Fissions are documented in a number of animal species, but are comparatively rare in male philopatric primates. One of the few likely cases occurred in chimpanzees in 1973 in Gombe National Park, Tanzania, when the main study community split into two separate communities, Kasekela and Kahama. Over the next four years, the Kasekela community killed the adult males and one female of the Kahama community. Here we use social network analysis to explore the process of community fission in chimpanzees by examining association, grooming, and ranging patterns. We found that the two communities split from one original cohesive community, although one with incipient subgrouping patterns. Subgrouping patterns in the grooming and association networks began to increase sharply beginning in 1971, and this period closely coincided with a dominance struggle between three high-ranking males and with a peak in operational sex ratio. Finally, we found a relationship between post-split community membership and previous association, grooming and ranging patterns in most periods of analysis, a tendency that became more pronounced as the fission approached. Thus, analysis suggests that the community began to split during a time of unusual sex ratio and a protracted dominance struggle, and that individuals remained with others with whom they preferentially associated in the previous years. These results are contrasted with group fissions in other taxa, and provide clues to the costs and benefits of group membership in chimpanzees.
III. In sexually reproducing animals, male and female reproductive strategies often conflict. In some species, males use aggression to overcome female choice, but debate persists over the extent to which this strategy is successful. Previous studies of male aggression toward females among wild chimpanzees have yielded contradictory results about the relationship between aggression and mating behavior. Critically, however, copulation frequency in primates is not always predictive of reproductive success. We analyzed a 17-year sample of behavioral and genetic data from the Kasekela chimpanzee community in Gombe National Park, Tanzania, to test the hypothesis that male aggression toward females increases male reproductive success. We examined the effect of male aggression toward females during ovarian cycling, including periods when the females were sexually receptive (swollen) and periods when they were not. We found that, after controlling for confounding factors, male aggression during a female’s swollen periods was positively correlated with copulation frequency. However, aggression toward swollen females was not predictive of paternity. Instead, aggression by high-ranking males toward females during their nonswollen periods was positively associated with likelihood of paternity. This indicates that long-term patterns of intimidation allow high-ranking males to increase their reproductive success, supporting the sexual coercion hypothesis. To our knowledge, this is the first study to present genetic evidence of sexual coercion as an adaptive strategy in a social mammal.
Item Open Access What Makes Our Minds Human? Comparative Phylogenetic Perspectives on the Evolution of Cognition(2012) MacLean, EvanWhat makes our minds human? How did they evolve to be this way? This dissertation presents data from two complementary lines of research driven by these orienting questions. The first of these explores the `what' of human cognitive evolution through comparative studies with chimpanzees and bonobos. The general aim of these studies is to understand which aspects of cognition are unique to humans, and which are shared with our closest living relatives. Chapters 2-3 test the hypothesis that humans have unique cognitive skills for reasoning about the attention of other individuals (theory of mind), and unique motivation to use these skills in cooperative contexts with conspecifics. In Chapter 2 I show that understanding others' attention is unlikely to be the `small difference that makes the big difference', as some researchers have proposed. However, my data support the possibility that species differences in the ontogeny of these skills may have robust consequences for the adult cognitive phenotype. In Chapter 3 I show that (contrary to previous reports) nonhuman apes are also motivated to engage in some simple triadic social activities, which resemble those characteristic of human children. Again however, I identify important differences between humans and other apes in their spontaneous preferences for these types of activities, and their attitudes toward a partner when cooperative behaviors are interrupted. The second half of this dissertation (Chapters 4-5) explores the `why' and `how' of cognitive evolution. Chapter 4 outlines the kind of research questions and methods that comparative psychologists will need to embrace in order to use the comparative method to its full potential in the study of cognitive evolution. Chapter 5 provides a proof of principle for this approach using a dataset including 33 species tested on two cognitive tasks measuring inhibitory control. Here I show that cognitive skills for inhibitory control are closely related to phylogeny across species, and strongly predicted by absolute (but not relative) brain size. Further, I show that two of the other leading hypotheses put forth to explain primate intelligence, namely sociality and diet, do not predict cognitive skills on these tasks. These data illustrate the power of the comparative method for understanding cognitive evolution, and provide a starting point for future studies embracing this approach. Collectively, this research refines our understanding of how human cognition differs from that of other primates, and illustrates the utility of studying cognitive evolution from an explicitly phylogenetic comparative framework.