Browsing by Subject "Chimpanzees"
- Results Per Page
- Sort Options
Item Open Access A 3D Geometric Morphometric Investigation of Relatedness in the Modern Human, Chimpanzee, and Homo naledi Postcranial Skeleton(2023) Rossillo, Amanda NoelleStudies of skeletal variation form the basis of our understanding of our species’ history and diversity. This most commonly takes the form of comparative, between- species studies aimed at reconstructing phylogenetic relationships. However, studies of within-species variation can provide insights into relatedness at smaller scales, which can shed light on important microevolutionary processes and be used to identify closely related individuals in the absence of DNA. This dissertation assesses the relationship between genetic and skeletal variation within groups of related and unrelated Homo sapiens and Pan troglodytes, with the aim of better understanding the population sampled by the seemingly homogenous Homo naledi assemblage from the Dinaledi Chamber in Rising Star Cave, South Africa. The hypotheses tested were: 1) closely related individuals exhibit less skeletal variation compared to unrelated individuals, and 2) the Dinaledi assemblage exhibits less morphological variation than H. sapiens and P. troglodytes at the species level, more closely resembling a single population.
Skeletal variation within a subset of H. sapiens from the crypt of Christ Church in Spitalfields, London (17-19th centuries A.D) with documented genealogies and the Gombe population of P. t. schweinfurthii was compared to species-wide baselines and the H. naledi assemblage. The data consisted of 3D models of 556 postcranial elements (first metacarpal (Mc1), proximal femur, talus, calcaneus, and navicular) from 187 individuals that were generated from surface scanners or downloaded from MorphoSource.
This dissertation employed a relatively new 3D geometric morphometric workflow that captures the entire shape of an element through the use of an automated landmarking program and feature-aware registration process. Two hundred pseudolandmarks were automatically and optimally placed on each element. Following alignment, multiple univariate and multivariate statistical analyses were used to quantify shape variation within and between the three species, including distributions of Euclidean distances, Procrustes distances to the mean shapes, Principal Components Analyses (PCA), Between-Group PCA, and Discriminant Function Analyses. The coefficient of relationship was used to represent genetic distance between known genetic relatives within modern humans.
The results of the within-species analyses of skeletal variation support Hypothesis 1 in both modern humans and chimpanzees, though the signal of relatedness is differentially expressed within and across elements. In modern humans, the calcaneus can be used to distinguish known close relatives from distantly related and unrelated individuals. The navicular and femur were also found to be relatively good indicators of relatedness. Within chimpanzees, the talus is the most effective at distinguishing the Gombe population from the species-wide chimpanzee sample, followed by the calcaneus and femur. Within H. naledi, the talus varied the least while the navicular varied the most, though the high levels of variation found in the navicular and Mc1 are likely due to the state of preservation of these elements. The results of the interspecies analyses are more ambiguous. When considering the best preserved elements, the H. naledi talus varies the least within the three species, while the femur varies more than those of either H. sapiens or P. troglodytes at the species level. Hypothesis 2 is thus supported for the talus while rejected in the femur, suggesting that it cannot be rejected as a whole and that the patterns of homogeneity previously observed within H. naledi are more nuanced than previously recognized.
Item Open Access The evolution of transitive inference: Chimpanzees’ performance with social and nonsocial stimuli(2014-05-16) Kaiser, LeahA number of theories posit various social and nonsocial factors as the central drivers of the evolution of intelligence. Cognitive skills, such as transitive interference, that have important implications in both the social and nonsocial domains can help identify drivers of cognitive evolution. Transitive inference is an inferential reasoning skill, which allows individuals to deduce unknown relationships from known ones. Due to its importance in both social and nonsocial contexts it can provide a powerful test of the driving forces behind primate cognitive evolution. We compared chimpanzees’ (Pan troglodytes) performance on social and nonsocial versions of a transitive inference task in order to assess whether they are better adapted to apply transitive reasoning to social or nonsocial stimuli. Our preliminary findings provide partial support for the hypotheses that chimpanzees are better adapted to use transitive inference in the social and nonsocial domains. However, our statistical abilities are limited by a small sample size and several confounding factors regarding the age and sex of our subjects, which limit firm conclusions. Further research (outlined in our methods) will allow us to more accurately asses the factors associated with the evolution of transitive inference skills in chimpanzees.