Browsing by Subject "Chlamydia trachomatis"
Results Per Page
Sort Options
Item Open Access Antichlamydial antibodies, human fertility, and pregnancy wastage.(Infectious diseases in obstetrics and gynecology, 2011-01) Stephens, Amanda J; Aubuchon, Mira; Schust, Danny JGenital infections with Chlamydia trachomatis (C. trachomatis) continue to be a worldwide epidemic. Immune response to chlamydia is important to both clearance of the disease and disease pathogenesis. Interindividual responses and current chlamydial control programs will have enormous effects on this disease and its control strategies. Humoral immune response to C. trachomatis occurs in humans and persistent antibody levels appear to be most directly correlated with more severe and longstanding disease and with reinfection. There is a close correlation between the presence of antichlamydial antibodies in females and tubal factor infertility; the closest associations have been found for antibodies against chlamydial heat shock proteins. The latter antibodies have also been shown to be useful among infertile patients with prior ectopic pregnancy, and their presence has been correlated with poor IVF outcomes, including early pregnancy loss. We review the existing literature on chlamydial antibody testing in infertile patients and present an algorithm for such testing in the infertile couple.Item Open Access Chlamydia trachomatis immune evasion via downregulation of MHC class I surface expression involves direct and indirect mechanisms.(Infectious diseases in obstetrics and gynecology, 2011-01) Ibana, Joyce A; Schust, Danny J; Sugimoto, Jun; Nagamatsu, Takeshi; Greene, Sheila J; Quayle, Alison JGenital C. trachomatis infections typically last for many months in women. This has been attributed to several strategies by which C. trachomatis evades immune detection, including well-described methods by which C. trachomatis decreases the cell surface expression of the antigen presenting molecules major histocompatibility complex (MHC) class I, MHC class II, and CD1d in infected genital epithelial cells. We have harnessed new methods that allow for separate evaluation of infected and uninfected cells within a mixed population of chlamydia-infected endocervical epithelial cells to demonstrate that MHC class I downregulation in the presence of C. trachomatis is mediated by direct and indirect (soluble) factors. Such indirect mechanisms may aid in priming surrounding cells for more rapid immune evasion upon pathogen entry and help promote unfettered spread of C. trachomatis genital infections.Item Open Access Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.(PLoS One, 2015) Saka, Hector Alex; Thompson, J Will; Chen, Yi-Shan; Dubois, Laura G; Haas, Joel T; Moseley, Arthur; Valdivia, Raphael HThe obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.Item Open Access Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events.(PloS one, 2016-01) Buckner, Lyndsey R; Amedee, Angela M; Albritton, Hannah L; Kozlowski, Pamela A; Lacour, Nedra; McGowin, Chris L; Schust, Danny J; Quayle, Alison JChlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.Item Open Access Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma.(Scientific reports, 2018-05) Ibana, Joyce A; Sherchand, Shardulendra P; Fontanilla, Francis L; Nagamatsu, Takeshi; Schust, Danny J; Quayle, Alison J; Aiyar, AshokThe intracellular bacterial pathogen, Chlamydia trachomatis, is a tryptophan auxotroph. Therefore, induction of the host tryptophan catabolizing enzyme, indoleamine-2,3-dioxgenase-1 (IDO1), by interferon gamma (IFNγ) is one of the primary protective responses against chlamydial infection. However, despite the presence of a robust IFNγ response, active and replicating C. trachomatis can be detected in cervical secretions of women. We hypothesized that a primary C. trachomatis infection may evade the IFNγ response, and that the protective effect of this cytokine results from its activation of tryptophan catabolism in bystander cells. To test this hypothesis, we developed a novel method to separate a pool of cells exposed to C. trachomatis into pure populations of live infected and bystander cells and applied this technique to distinguish between the effects of IFNγ on infected and bystander cells. Our findings revealed that the protective induction of IDO1 is suppressed specifically within primary infected cells because Chlamydia attenuates the nuclear import of activated STAT1 following IFNγ exposure, without affecting STAT1 levels or phosphorylation. Critically, the IFNγ-mediated induction of IDO1 activity is unhindered in bystander cells. Therefore, the IDO1-mediated tryptophan catabolism is functional in these cells, transforming these bystander cells into inhospitable hosts for a secondary C. trachomatis infection.Item Open Access Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation.(PLoS One, 2015) Kokes, Marcela; Valdivia, Raphael HChlamydia trachomatis manipulates host cellular pathways to ensure its proliferation and survival. Translocation of host materials into the pathogenic vacuole (termed 'inclusion') may facilitate nutrient acquisition and various organelles have been observed within the inclusion, including lipid droplets, peroxisomes, multivesicular body components, and membranes of the endoplasmic reticulum (ER). However, few of these processes have been documented in living cells. Here, we survey the localization of a broad panel of subcellular elements and find ER, mitochondria, and inclusion membranes within the inclusion lumen of fixed cells. However, we see little evidence of intraluminal localization of these organelles in live inclusions. Using time-lapse video microscopy we document ER marker translocation into the inclusion lumen during chemical fixation. These intra-inclusion ER elements resist a variety of post-fixation manipulations and are detectable via immunofluorescence microscopy. We speculate that the localization of a subset of organelles may be exaggerated during fixation. Finally, we find similar structures within the pathogenic vacuole of Coxiella burnetti infected cells, suggesting that fixation-induced translocation of cellular materials may occur into the vacuole of a range of intracellular pathogens.Item Open Access Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis.(MBio, 2016-03-22) Young, Hayley E; Zhao, Jinshi; Barker, Jeffrey R; Guan, Ziqiang; Valdivia, Raphael H; Zhou, PeiConstitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, includingChlamydia trachomatis Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogenC. trachomatislacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against aC. trachomatisgenomic library using a conditional-lethallpxHmutantEscherichia colistrain, we have identified an open reading frame (Ct461, renamedlpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function inE. coliand catalyzes the conversion of UDP-DAGn to lipid Xin vitro LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity ofC. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools forC. trachomatisand should be broadly applicable for the functional characterization of other essentialC. trachomatisgenes.IMPORTANCEChlamydia trachomatisis a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of manyChlamydiagenes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against theC. trachomatisgenomic library using a conditional-lethal mutant ofE. coliand identified the missing essential gene in the lipid A biosynthetic pathway, which we designatedlpxG We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activityin vitro Overexpression of LpxG inC. trachomatisleads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating thein vivofunction of LpxG and highlighting the importance of regulated lipid A biosynthesis inC. trachomatis.Item Open Access Inhibition of the futalosine pathway for menaquinone biosynthesis suppresses Chlamydia trachomatis infection.(FEBS letters, 2021-12) Dudiak, Brianne M; Nguyen, Tri M; Needham, David; Outlaw, Taylor C; McCafferty, Dewey GChlamydia trachomatis, an obligate intracellular bacterium with limited metabolic capabilities, possesses the futalosine pathway for menaquinone biosynthesis. Futalosine pathway enzymes have promise as narrow-spectrum antibiotic targets, but the activity and essentiality of chlamydial menaquinone biosynthesis have yet to be established. In this work, menaquinone-7 (MK-7) was identified as a C. trachomatis-produced quinone through liquid chromatography-tandem mass spectrometry. An immunofluorescence-based assay revealed that treatment of C. trachomatis-infected HeLa cells with the futalosine pathway inhibitor docosahexaenoic acid (DHA) reduced inclusion number, inclusion size, and infectious progeny. Supplementation with MK-7 nanoparticles rescued the effect of DHA on inclusion number, indicating that the futalosine pathway is a target of DHA in this system. These results open the door for menaquinone biosynthesis inhibitors to be pursued in antichlamydial development.Item Open Access Investigation Into Molecular Mechanisms of Substrate Recognition for Chlamydial Protease-Like Activity Factor (CPAF)(2015) Maksimchuk, Kenneth RaymanThe obligate intracellular pathogen, Chlamydia trachomatis, is becoming an ever greater public health threat worldwide. Despite aggressive public health awareness campaigns and treatment with antibiotics, chlamydial infections continue to be the most frequently reported sexually transmitted infection in the United States and the cause of 3% of worldwide blindness. While research into understanding various mechanisms of chlamydial pathogenesis is ongoing, efforts to identify critical protein targets are hampered by the lack of facile genetic manipulation systems available for Chlamydia. Without the ability to perform genetic studies, researchers have employed chemical biology tools to close the gap in understanding how Chlamydia survives and thrives in the host cell.
Chlamydial protease-like activity factor (CPAF) has been identified as a central virulence factor in chlamydial pathogenesis. Several studies have indicated a role for CPAF-mediated degradation of host proteins in the late stages of infection. CPAF is hypothesized to interfere with myriad host cell processes, including inflammation, cell proliferation, cytoskeletal development, and immunity presentation. However, recent studies have called into question the methods used to previously identify bona fide in vivo CPAF targets, as CPAF has been shown to retain proteolytic activity even in the presence of broad spectrum protease inhibitors. As a result of these new finding, there is a renewed call to carefully identify CPAF substrates using methods that ensure total inhibition of post-lysis proteolysis.
This dissertation aims to clarify the role of CPAF in chlamydial pathogenesis and to identify mechanisms by which CPAF exhibits substrate specificity. Because enzymes can manifest specificity through kinetic mechanisms, sequence recognition, secondary site substrate binding, or protein structure level specificity, multiple methods of biochemical characterization were employed to distinguish between these modes of specificity.
Optimized HPLC-based and fluorescence quenching assays were developed and used to investigate the chemical and kinetic mechanism of CPAF proteolysis, as well as to characterize CPAF resistance to broad spectrum protease inhibitors. Peptide library proteomics were designed to probe active site sequence recognition of specific amino acids. Bioinformatic approaches were used to recognize and annotate a cryptic PDZ-like domain in CPAF, which bears strong structural similarity to human epithelial tight junction proteins. Using a new endocervical cellular model of infection, a recently developed C. trachomatis mutant lacking CPAF activity was investigated. Mass spectrometry proteomics analysis was employed to detect differential cleavage of host proteins in endocervical cells infected with CPAF+ and CPAF- strains of C. trachomatis. Lastly, methods for N-terminal labeling and enrichment were adapted for further identifying CPAF substrates in a cellular infection model. The subtiligase system for biotinylation of N-terminal amines was adapted for integration with C. trachomatis infection assays and downstream mass spectrometry proteomics. Ultimately, the dissertation offers clarification of the role of CPAF in chlamydial infection and provides chemical biology tools for further study of protease function in bacterial pathogenesis.
Item Open Access Simultaneous Evaluation of Diagnostic Assays for Pharyngeal and Rectal Neisseria gonorrhoeae and Chlamydia trachomatis Using a Master Protocol.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2020-12) Doernberg, Sarah B; Komarow, Lauren; Tran, Thuy Tien T; Sund, Zoe; Pandori, Mark W; Jensen, David; Tsalik, Ephraim L; Deal, Carolyn D; Chambers, Henry F; Fowler, Vance G; Evans, Scott R; Patel, Robin; Klausner, Jeffrey DBackground
Pharyngeal and rectal Neisseria gonorrhoeae and Chlamydia trachomatis play important roles in infection and antibacterial resistance transmission, but no US Food and Drug Administration (FDA)-cleared assays for detection at these sites existed prior to this study. The objective was to estimate performance of assays to detect those infections in pharyngeal and rectal specimens to support regulatory submission.Methods
We performed a cross-sectional, single-visit study of adults seeking sexually transmitted infection testing at 9 clinics in 7 states. We collected pharyngeal and rectal swabs from participants. The primary outcome was positive and negative percent agreement for detection of N. gonorrhoeae and C. trachomatis for 3 investigational assays compared to a composite reference. Secondary outcomes included positivity as well as positive and negative predictive values and likelihood ratios. Subgroup analyses included outcomes by symptom status and sex.Results
A total of 2598 participants (79% male) underwent testing. We observed N. gonorrhoeae positivity of 8.1% in the pharynx and 7.9% in the rectum and C. trachomatis positivity of 2.0% in the pharynx and 8.7% in the rectum. Positive percent agreement ranged from 84.8% to 96.5% for different anatomic site infection combinations, whereas negative percent agreement was 98.8% to 99.6%.Conclusions
This study utilized a Master Protocol to generate diagnostic performance data for multiple assays from different manufacturers in a single study population, which ultimately supported first-in-class FDA clearance for extragenital assays. We observed very good positive percent agreement when compared to a composite reference method for the detection of both pharyngeal and rectal N. gonorrhoeae and C. trachomatis.Clinical trials registration
NCT02870101.Item Open Access Type III Secretion Chaperones in Chlamydia trachomatis: Identification of a New Effector Protein and Insights into Hierarchical Protein Secretion during Early Infection(2014) Chen, Yi-ShanChlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Although the temporal manner in which effectors are secreted is important for the proper manipulation of host cell functions, the mechanism remains a mystery. In this study, we provide several lines of evidence that T3S chaperones may impart coherence to effector secretion. In addition, we identified a new early T3S effector in Chlamydia. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. By defining proteins that associate with the three most abundant T3S chaperones, Slc1, Scc2 and Mcsc in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry, we identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form stable complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses and lack of C. trachomatis-induced morphological changes. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.