Browsing by Subject "Clenbuterol"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.(FASEB J, 2014-05) Farah, Benjamin L; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M; Young, Sarah P; Koeberl, Dwight DEnzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.Item Open Access Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle.(Mol Genet Metab, 2011-06) Koeberl, Dwight D; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G; Chen, Y-T; Bali, Deeksha SEnzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with the administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β(2)-agonist, enhanced the CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA.Item Open Access Salmeterol enhances the cardiac response to gene therapy in Pompe disease.(Mol Genet Metab, 2016-05) Han, Sang-Oh; Li, Songtao; Koeberl, Dwight DEnzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.Item Open Access β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility.(Skeletal muscle, 2018-12-27) Kim, Jihee; Grotegut, Chad A; Wisler, James W; Li, Tianyu; Mao, Lan; Chen, Minyong; Chen, Wei; Rosenberg, Paul B; Rockman, Howard A; Lefkowitz, Robert JBACKGROUND:β2-adrenergic receptors (β2ARs) are the target of catecholamines and play fundamental roles in cardiovascular, pulmonary, and skeletal muscle physiology. An important action of β2AR stimulation on skeletal muscle is anabolic growth, which has led to the use of agonists such as clenbuterol by athletes to enhance muscle performance. While previous work has demonstrated that β2ARs can engage distinct signaling and functional cascades mediated by either G proteins or the multifunctional adaptor protein, β-arrestin, the precise role of β-arrestin in skeletal muscle physiology is not known. Here, we tested the hypothesis that agonist activation of the β2AR by clenbuterol would engage β-arrestin as a key transducer of anabolic skeletal muscle growth. METHODS:The contractile force of isolated extensor digitorum longus muscle (EDL) and calcium signaling in isolated flexor digitorum brevis (FDB) fibers were examined from the wild-type (WT) and β-arrestin 1 knockout mice (βarr1KO) followed by chronic administration of clenbuterol (1 mg/kg/d). Hypertrophic responses including fiber composition and fiber size were examined by immunohistochemical imaging. We performed a targeted phosphoproteomic analysis on clenbuterol stimulated primary cultured myoblasts from WT and βarr1KO mice. Statistical significance was determined by using a two-way analysis with Sidak's or Tukey's multiple comparison test and the Student's t test. RESULTS:Chronic administration of clenbuterol to WT mice enhanced the contractile force of EDL muscle and calcium signaling in isolated FDB fibers. In contrast, when administered to βarr1KO mice, the effect of clenbuterol on contractile force and calcium influx was blunted. While clenbuterol-induced hypertrophic responses were observed in WT mice, this response was abrogated in mice lacking β-arrestin 1. In primary cultured myoblasts, clenbuterol-stimulated phosphorylation of multiple pro-hypertrophy proteins required the presence of β-arrestin 1. CONCLUSIONS:We have identified a previously unappreciated role for β-arrestin 1 in mediating β2AR-stimulated skeletal muscle growth and strength. We propose these findings could have important implications in the design of future pharmacologic agents aimed at reversing pathological conditions associated with skeletal muscle wasting.