Browsing by Subject "Clone Cells"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Allo-Specific Humoral Responses: New Methods for Screening Donor-Specific Antibody and Characterization of HLA-Specific Memory B Cells.(Frontiers in immunology, 2021-01) Song, Shengli; Manook, Miriam; Kwun, Jean; Jackson, Annette M; Knechtle, Stuart J; Kelsoe, GarnettAntibody-mediated allograft rejection (AMR) causes more kidney transplant failure than any other single cause. AMR is mediated by antibodies recognizing antigens expressed by the graft, and antibodies generated against major histocompatibility complex (MHC) mismatches are especially problematic. Most research directed towards the management of clinical AMR has focused on identifying and characterizing circulating donor-specific HLA antibody (DSA) and optimizing therapies that reduce B-cell activation and/or block antibody secretion by inhibiting plasmacyte survival. Here we describe a novel set of reagents and techniques to allow more specific measurements of MHC sensitization across different animal transplant models. Additionally, we have used these approaches to isolate and clone individual HLA-specific B cells from patients sensitized by pregnancy or transplantation. We have identified and characterized the phenotypes of individual HLA-specific B cells, determined the V(D)J rearrangements of their paired H and L chains, and generated recombinant antibodies to determine affinity and specificity. Knowledge of the BCR genes of individual HLA-specific B cells will allow identification of clonally related B cells by high-throughput sequence analysis of peripheral blood mononuclear cells and permit us to re-construct the origins of HLA-specific B cells and follow their somatic evolution by mutation and selection.Item Open Access Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.(Nature, 2013-04-25) Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S Munir; Boyd, Scott D; Fire, Andrew Z; Roskin, Krishna M; Schramm, Chaim A; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; NISC Comparative Sequencing Program; Mullikin, James C; Gnanakaran, S; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C; Parks, Robert; Lloyd, Krissey E; Scearce, Richard M; Soderberg, Kelly A; Cohen, Myron; Kamanga, Gift; Louder, Mark K; Tran, Lillian M; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, M Gordon; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M; Hahn, Beatrice H; Kepler, Thomas B; Korber, Bette TM; Kwong, Peter D; Mascola, John R; Haynes, Barton FCurrent human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers.(J Exp Med, 1992-09-01) Jacob, J; Kelsoe, GIn the genetically restricted response that follows immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to protein carriers, two distinct populations of B cells are observed in the spleens of C57BL/6 mice. By 48 h postimmunization, foci of antigen-binding B cells appear along the periphery of the periarteriolar lymphoid sheaths. These foci expand to contain large numbers of antibody-forming cells that neither bind the lectin, peanut agglutinin, nor mutate the rearranged immunoglobulin variable region loci. Germinal centers containing peanut agglutinin-positive B cells can be observed by 96-120 h after immunization. Although specific for the immunizing hapten, these B cells do not produce substantial amounts of antibody, but are the population that undergoes somatic hypermutation and affinity-driven selection. Both focus and germinal center populations are pauciclonal, founded, on average, by three or fewer B lymphocytes. Despite the highly specialized roles of the focus (early antibody production) and germinal center (higher affinity memory cells) B cell populations, analysis of VH to D to JH joins in neighboring foci and germinal centers demonstrate that these B cell populations have a common clonal origin.Item Open Access Molecular characteristics of mantle cell lymphoma presenting with clonal plasma cell component.(The American journal of surgical pathology, 2011-02) Visco, Carlo; Hoeller, Sylvia; Malik, Jeffrey T; Xu-Monette, Zijun Y; Wiggins, Michele L; Liu, Jessica; Sanger, Warren G; Liu, Zhongfeng; Chang, Julie; Ranheim, Erik A; Gradowski, Joel F; Serrano, Sergio; Wang, Huan-You; Liu, Qingquan; Dave, Sandeep; Olsen, Brian; Gascoyne, Randy D; Campo, Elias; Swerdlow, Steven H; Chan, Wing C; Tzankov, Alexander; Young, Ken HThe normal counterparts of mantle cell lymphoma (MCL) are naive, quiescent B cells that have not been processed through the germinal center (GC). For this reason, although lymphomas arising from GC or post-GC B cells often exhibit plasmacytic differentiation, MCL rarely presents with plasmacytic features. Seven cases of MCL with a monotypic plasma cell (PC) population were collected from 6 centers and were studied by immunohistochemistry, fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms analysis, capillary gel electrophoresis, and restriction fragment length polymorphism of immunoglobulin heavy chain analysis of microdissections of each of the MCL and PC populations to assess their clonal relationship. The clinical presentation was rather unusual compared with typical MCL, with 2 cases arising from the extranodal soft tissues of the head. All MCL cases were morphologically and immunohistochemically typical, bearing the t(11;14)(q13;q32). In all cases, the PC population was clonal. In 5 of the 7 cases, the MCL and PC clones showed identical restriction fragments, indicating a common clonal origin of the neoplastic population. The 2 cases with clonal diversity denoted the coexistence of 2 different tumors in a composite lymphoma/PC neoplasm. Our findings suggest that MCL can present with a PC component that is often clonally related to the lymphoma, representing a rare but unique biological variant of this tumor.Item Open Access Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung.(Nature communications, 2015-04-13) Jain, Rajan; Barkauskas, Christina E; Takeda, Norifumi; Bowie, Emily J; Aghajanian, Haig; Wang, Qiaohong; Padmanabhan, Arun; Manderfield, Lauren J; Gupta, Mudit; Li, Deqiang; Li, Li; Trivedi, Chinmay M; Hogan, Brigid LM; Epstein, Jonathan AThe plasticity of differentiated cells in adult tissues undergoing repair is an area of intense research. Pulmonary alveolar type II cells produce surfactant and function as progenitors in the adult, demonstrating both self-renewal and differentiation into gas exchanging type I cells. In vivo, type I cells are thought to be terminally differentiated and their ability to give rise to alternate lineages has not been reported. Here we show that Hopx becomes restricted to type I cells during development. However, unexpectedly, lineage-labelled Hopx(+) cells both proliferate and generate type II cells during adult alveolar regrowth following partial pneumonectomy. In clonal 3D culture, single Hopx(+) type I cells generate organoids composed of type I and type II cells, a process modulated by TGFβ signalling. These findings demonstrate unanticipated plasticity of type I cells and a bidirectional lineage relationship between distinct differentiated alveolar epithelial cell types in vivo and in single-cell culture.Item Open Access Potential associations between severity of infection and the presence of virulence-associated genes in clinical strains of Staphylococcus aureus.(PLoS One, 2011-04-26) Gill, Steven R; McIntyre, Lauren M; Nelson, Charlotte L; Remortel, Brian; Rude, Tom; Reller, L Barth; Fowler, Vance GBACKGROUND: The clinical spectrum of Staphylococcus aureus infection ranges from asymptomatic nasal carriage to osteomyelitis, infective endocarditis (IE) and death. In this study, we evaluate potential association between the presence of specific genes in a collection of prospectively characterized S. aureus clinical isolates and clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred thirty-nine S. aureus isolates (121 methicillin-resistant S. aureus [MRSA] and 118 methicillin-susceptible S. aureus [MSSA]) were screened by array comparative genomic hybridization (aCGH) to identify genes implicated in complicated infections. After adjustment for multiple tests, 226 genes were significantly associated with severity of infection. Of these 226 genes, 185 were not in the SCCmec element. Within the 185 non-SCCmec genes, 171 were less common and 14 more common in the complicated infection group. Among the 41 genes in the SCCmec element, 37 were more common and 4 were less common in the complicated group. A total of 51 of the 2014 sequences evaluated, 14 non-SCCmec and 37 SCCmec, were identified as genes of interest. CONCLUSIONS/SIGNIFICANCE: Of the 171 genes less common in complicated infections, 152 are of unknown function and may contribute to attenuation of virulence. The 14 non-SCCmec genes more common in complicated infections include bacteriophage-encoded genes such as regulatory factors and autolysins with potential roles in tissue adhesion or biofilm formation.