Browsing by Subject "Coagulation"
Results Per Page
Sort Options
Item Open Access Development and Characterization of Monovalent and Bivalent RNA Aptamers Targeting the Common Pathway of Coagulation(2016) Soule, Erin ElizabethAnticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.
A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.
The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.
To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.
Item Open Access Development of RNA Aptamers and Antidotes as Antithrombotic Therapeutics(2012) Bompiani, KristinThrombosis, or pathological blood clot formation, is intimately associated with cardiovascular disease and is the leading cause of morbidity and mortality in the western world. Antithrombotics are commonly prescribed as prophylactic medications or as rapid onset anticoagulants in acute care clinical settings. Although a number of antithrombotics are clinically available, their use is limited by immunogenicity, toxicity, and inability to be controlled with an antidote in the event of hemorrhage. Therefore, new antithrombotics that are effective, yet can be rapidly controlled are urgently needed.
Aptamers are oligonucleotides that form complex secondary and tertiary structures based on intramolecular base pairing and nucleic acid folding that allows them to bind to molecular targets with high affinity and specificity. Aptamers can be isolated that bind to proteins, such as clotting proteins, and modulate protein function. However, unlike most currently used antithrombotics, aptamers can be directly controlled with an antidote and therefore represent a safer class of therapeutic agents.
To generate a novel anticoagulant, we developed an aptamer-antidote pair against prothrombin. Prothrombin is a blood protein that plays an essential role in clot formation. I truncated, optimized, and studied the mechanism of an aptamer that can bind to prothrombin and inhibit prothrombin function, thereby severely impeding clot formation. Moreover, to increase the safety profile of this anticoagulant aptamer, I developed an antidote that can quickly reverse aptamer function and restore normal clotting. This aptamer and antidote pair is the first antidote reversible anticoagulant that targets prothrombin and may prove to be a valuable clinical anticoagulant.
A number of anticoagulants are in development, and a wide debate regarding the optimal protein target for anticoagulation is underway. We have previously generated anticoagulant aptamers to human coagulation factor VII, factor IX, factor X, and prothrombin. I compared the effects of these four anticoagulant aptamers to determine their impact on thrombin generation and clot formation. Each aptamer exerts its own unique effect on thrombin generation/clot formation, depending on the role that its protein target plays in coagulation. These studies provide valuable data regarding target validation and the anticoagulant effects of different therapeutic aptamers.
Robust anticoagulation is required during acute clinical surgical procedures to treat thrombosis. Currently used anticoagulants have several untoward side effects and most are not antidote controllable. I tested the effects of combining two anticoagulant aptamers to assess potential drug synergy. Several combinations of two anticoagulant aptamers were synergistic and severely impaired blood clot formation. One specific pair of aptamers that targeted factor X (FX) and prothrombin in combination was extremely potent and could keep blood fluid in an ex vivo model of extracorporeal circulation. Additionally, this pair of aptamers could be functionally modulated with two different types of antidotes. In conjunction with antidote reversal, this strategy of combining aptamer anticoagulants may prove useful in a variety of highly prothrombotic acute clinical settings.
Finally, to explore the potential of aptamers to regulate platelet function, I isolated and characterized an aptamer toward platelet glycoprotein VI. Glycoprotein VI is a platelet surface receptor that plays a key role in platelet activation and platelet plug formation. I isolated several aptamers that bind to glycoprotein VI, and show that the lead aptamer binds to platelets with high affinity and causes platelet activation and aggregation. This aptamer could potentially be further developed for topical administration to manage bleeding, or for biomarker detection of soluble glycoprotein VI in patient plasma.
Item Open Access Targeting the Intrinsic Pathway of Coagulation with RNA Aptamers(2013) Woodruff, Rebecca SmockThrombosis is associated with the occlusion of a blood vessel and can be triggered by a number of types of injury, such as the rupture of an atherosclerotic plaque on the artery wall, changes in blood composition, or blood stasis. The resulting thrombosis can cause major diseases such as myocardial infarction, stroke, and venous thromboembolic disorders that, collectively, account for the most common cause of death in the developed world. Anticoagulants are used to treat and prevent these thrombotic diseases in a number of clinical and surgical settings. Although commonly prescribed, currently approved anticoagulants have a major limitation of severe drug-induced bleeding that contributes to the high levels of morbidity and mortality associated with use. The "holy grail" for antithrombotic therapy is to identify a drug that inhibits thrombus formation without promoting bleeding. Understanding the differences between thrombosis and hemostasis in the vascular system is critical to developing these safe and effective anticoagulants, as this depends on striking the correct balance between inhibiting thrombus formation (efficacy) and reducing the risk of severe bleeding (safety). While it is commonly thought that the same factors play a similar role in hemostasis and thrombosis, recent evidence points to differing functions for FXI and FXII in each of these settings. Importantly, these factors seem to contribute to pathological thrombus formation without being involved in normal hemostasis.
The overall goal of this project was to evaluate the inhibition of the intrinsic pathway of coagulation as a potential anticoagulant strategy utilizing the aptamer platform. Aptamers are short, highly structured nucleic acids that act as antagonists by binding to large surface areas on their target protein and thus tend to inhibit protein-protein interactions. High affinity binding aptamers have been isolated that specifically target a diverse range of proteins, including transcription factors, proteases, viral proteins, and growth factors, as well as other coagulation factors. As synthetic molecules, aptamers have a small molecular weight, are highly amenable to modifications that can control their bioavailability, and have not been found to elicit an immune response, thus making them ideal drug candidates. Importantly, aptamers can be rapidly and effectively reversed with either a sequence specific antidote that recognizes the primary sequence of the aptamer or a universal antidote that binds to their backbone and reverses all aptamer activity independent of sequence. This ability lends itself well to their therapeutic application in coagulation, as rapid reversal of a drug upon the onset of bleeding is a key property for increasing the safety of this class of drugs.
Aptamers targeting FXI/FXIa and FXII/FXIIa were isolated in two separate SELEX (systematic evolution of ligands by exponential enrichment) procedures: the FXII aptamer was isolated in a convergent SELEX approach and the FXIa aptamer was isolated from a purified protein selection. In both processes, 2'fluoropyrimindine modified RNA with a 40-nucleotide random region was incubated with either the plasma proteome (in initial rounds of the convergent SELEX) or the purified protein target (FXII or FXIa). The nucleic acids that did not bind to the target were separated from those that bound, and these molecules were then amplified to generate an enriched pool with increased binding affinity for the target. This process was repeated under increasingly stringent conditions to isolate the aptamer that bound with the highest affinity to the purified target protein. Utilizing biochemical and in vitro coagulation assays, specific, high-affinity binding and functional anticoagulant aptamers were identified for both protein targets, and the mechanism of anticoagulation was ascertained for each aptamer.
Overall, both aptamers bound to an exosite on their target protein that was able to inhibit downstream activation of the next protein in the coagulation cascade. In order to specifically examine aptamer effects on several parameters of thrombin generation, a new assay was developed and fully characterized using aptamer anticoagulants targeting other coagulation factors. Aptamer inhibition of both FXI and FXII was able to decrease thrombin generation in human plasma. However, limited cross-reactivity in other animal species by both aptamers hindered our ability to assess aptamer inhibition in an in vivo setting. Moving forward, screening aptamers against a larger selection of animal plasmas will hopefully allow us to identify an animal species in which we can analyze aptamer inhibition of the intrinsic pathway for effectiveness and safety in inhibiting thrombosis. The further characterization and use of these aptamers in plasma and blood based settings will allow us to study the diverging functions of the intrinsic pathway in thrombosis and hemostasis.
A critical need exists for safe and effective anticoagulants to treat and prevent numerous thrombotic procedures and diseases. An ideal anticoagulant is one that strikes the correct balance between inhibiting thrombus formation and reducing drug-induced bleeding. Inhibition or depletion of factors XI and XII of the intrinsic pathway of coagulation have shown reduced thrombus formation without interruption of normal hemostasis in several models of thrombosis. By developing novel RNA aptamer anticoagulants to these factors, we have set the stage for evaluating the net therapeutic benefit of intrinsic pathway inhibition to effectively control coagulation, manage thrombosis, and improve patient outcome. As well as developing a safe anticoagulation, these agents can lead to important biological discoveries concerning the fundamental difference between hemostasis and thrombosis.