Browsing by Subject "Compressor"
- Results Per Page
- Sort Options
Item Open Access Aeroelastic Instabilities due to Unsteady Aerodynamics(2015) Besem, Fanny MaudOne of the grand challenges faced by industry is the accurate prediction of unsteady aerodynamics events, including frequency lock-in and forced response. These aeromechanical incidents occurring in airplane engines and gas turbines can cause high-amplitude blade vibration and potential failure of the engine or turbine. During the last decades, the development of computational fluid dynamics has allowed the design and optimization of complex components while reducing the need for expensive engine testing. However, the validation of frequency lock-in and forced response numerical results with experimental data is very incomplete. Despite tremendous advances in computational capabilities, industry is still looking to validate design tools and guidelines to avoid these potentially costly aeroelastic events early in the design process.
The research efforts presented in this dissertation investigate the aeroelastic phenomena of frequency lock-in and forced response in turbomachinery. First, frequency lock-in is predicted for two structures, namely a two-dimensional cylinder and a single three-dimensional airfoil, and the results are compared to experimental data so that the methods can be extended to more complex structures. For these two simpler structures, a frequency domain harmonic balance code is used to estimate the natural shedding frequency and the corresponding lock-in region. Both the shedding frequencies and the lock-in regions obtained by an enforced motion method agree with experimental data from previous literature and wind tunnel tests. Moreover, the aerodynamic model of the vibrating cylinder is coupled with the structural equations of motion to form a fluid-structure interaction model and to compute the limit-cycle oscillation amplitude of the cylinder. The extent of the lock-in region matches the experimental data very well, yet the peak amplitude is underestimated in the numerical model. We demonstrate that the inclusion of the cylinder second degree of freedom has a significant impact on the cylinder first degree of freedom amplitude. Moreover, it is observed that two harmonics need to be kept in the equations of motion for accurate prediction of the unsteady forces on the cylinder.
The second important topic covered is a comprehensive forced response analysis conducted on a multi-stage axial compressor and compared with the initial data of the largest forced response experimental data set ever obtained in the field. Both a frequency domain and a time domain codes are used. The steady-state and time-averaged aerodynamic performance results compare well with experimental data, although losses are underestimated due to the lack of secondary flow paths and fillets in the model. The use of mixing planes in the steady simulations underpredicts the wakes by neglecting the important interactions between rows. Therefore, for similar cases with significant flow separation, the use of a decoupled method for forced response predictions cannot yield accurate results. A full multi-row transient analysis must be conducted for accurate prediction of the wakes and surface unsteady pressures. Finally, for the first time, predicted mistuned blade amplitudes are compared to mistuned experimental data. The downstream stator is found to be necessary for the accurate prediction of the modal forces and vibration amplitudes. The mistuned rotor is shown to be extremely sensitive to perturbations in blade frequency mistuning, aerodynamic asymmetry, and excitation traveling wave content. Since this dissertation presents the initial results of a five-year research program, more research will be conducted on this compressor to draw guidelines that can be used by aeromechanical engineers to safely avoid forced response events in the design of jet engines and gas turbines.
Item Open Access Multi-Row Aerodynamic Interactions and Mistuned Forced Response of an Embedded Compressor Rotor(2016) Li, JingThis research investigates the forced response of mistuned rotor blades that can lead to excessive vibration, noise, and high cycle fatigue failure in a turbomachine. In particular, an embedded rotor in the Purdue Three-Stage Axial Compressor Research Facility is considered. The prediction of the rotor forced response contains three key elements: the prediction of forcing function, damping, and the effect of frequency mistuning. These computational results are compared with experimental aerodynamic and vibratory response measurements to understand the accuracy of each prediction.
A state-of-the-art time-marching computational fluid dynamic (CFD) code is used to predict the rotor forcing function. A highly-efficient nonlinear frequency-domain Harmonic Balance CFD code is employed for the prediction of aerodynamic damping. These allow the compressor aerodynamics to be depicted and the tuned rotor response amplitude to be predicted. Frequency mistuning is considered by using two reduced-order models of different levels of fidelity, namely the Fundamental Mistuning Model (FMM) and the Component Mode Mistuning (CMM) methods. This allows a cost-effective method to be identified for mistuning analysis, especially for probabilistic mistuning analysis.
The first topic of this work concerns the prediction of the forcing function of the embedded rotor due to the periodic passing of the neighboring stators that have the same vane counts. Superposition and decomposition methods are introduced under a linearity assumption, which states that the rotor forcing function comprises of two components that are induced by each neighboring stator, and that these components stay unchanged with only a phase shift with respect to a change in the stator-stator clocking position. It is found that this assumption captures the first-order linear relation, but neglects the secondary nonlinear effect which alters each stator-induced forcing functions with respect to a change in the clocking position.
The second part of this work presents a comprehensive mistuned forced response prediction of the embedded rotor at a high-frequency (higher-order) mode. Three steady loading conditions are considered. The predicted aerodynamics are in good agreement with experimental measurements in terms of the compressor performance, rotor tip leakage flow, and circumferential distributions of the stator wake and potential fields. Mistuning analyses using FMM and CMM models show that the extremely low-cost FMM model produces very similar predictions to those of CMM. The predicted response is in good agreement with the measured response, especially after taking the uncertainty in the experimentally-determined frequency mistuning into consideration. Experimentally, the characteristics of the mistuned response change considerably with respect to loading. This is not very well predicted, and is attributed to un-identified and un-modeled effects. A significant amplification factor over 1.5 is observed both experimentally and computationally for this higher-order mode.