Browsing by Subject "Computer science"
- Results Per Page
- Sort Options
Item Open Access 3D Object Representations for Robot Perception(2019) Burchfiel, Benjamin Clark MalloyReasoning about 3D objects is one of the most critical perception problems robots face; outside of navigation, most interactions between a robot and its environment are object-centric. Object-centric robot perception has long relied on maintaining an explicit database of 3D object models with the assumption that encountered objects will be exact copies of entries in the database; however, as robots move into unstructured environments such as human homes, the variation of encountered objects increases and maintaining an explicit object database becomes infeasible. This thesis introduces a general-purpose 3D object representation that allows the joint estimation of a previously unencountered object's class, pose, and 3D shape---crucial foundational tasks for general robot perception.
We present the first method capable of performing all three of these tasks simultaneously, Bayesian Eigenobjects (BEOs), and show that it outperforms competing approaches which estimate only object shape and class given a known object pose. BEOs use an approximate Bayesian version of Principal Component Analysis to learn an explicit low-dimensional subspace containing the 3D shapes of objects of interest, which allows for efficient shape inference at high object resolutions. We then extend BEOs to produce Hybrid Bayesian Eigenobjects (HBEOs), a fusion of linear subspace methods with modern convolutional network approaches, enabling realtime inference from a single depth image. Because HBEOs use a Convolutional Network to project partially observed objects onto the learned subspace, they allow the object to be larger and more expressive without impacting the inductive power of the model. Experimentally, we show that HBEOs offer significantly improved performance on all tasks compared to their BEO predecessors. Finally, we leverage the explicit 3D shape estimate produced by BEOs to further extend the state-of-the-art in category level pose estimation by fusing probabilistic pose predictions with a silhouette-based reconstruction prior. We also illustrate the advantages of combining both probabilistic pose estimation and shape verification, via an ablation study, and show that both portions of the system contribute to its performance. Taken together, these methods comprise a significant step towards creating a general-purpose 3D perceptual foundation for robotics systems, upon which problem-specific systems may be built.
Item Embargo 3D Tissue Modelling: Laser-based Multi-modal Surface Reconstruction, Crater Shape Prediction and Pathological Mapping in Robotic Surgery(2023) Ma, GuangshenIn surgical robotics, fully-automated tumor removal is an important topic and it includes three main tasks: tissue classification for cancer diagnosis, pathological mapping for tumor localization and tissue resection by using a laser scalpel. Generating a three-dimensional (3D) pathological tissue model with fully non-contact sensors can provide invaluable information to assist surgeons in decision-making and enable the use of surgical robots for efficient tissue manipulation. To collect the comprehensive information of a biological tissue target, robotic laser systems with complementary sensors (e.g., Optical coherence tomography (OCT) sensor, and stereovision) can play important roles in providing non-contact laser scalpels (i.e., cutting laser scalpel) for tissue removal, applying photonics-based sensors for pathological tissue classification (i.e., laser-based endogenous fluorescence), and aligning multi-sensing information to generate a 3D pathological map. However, there are three main challenges with integrating multiple laser-based sensors into the robotic laser system, which includes: 1) Modelling the laser beam transmission in 3D free-space to achieve accurate laser-tissue manipulation under geometric constraints, 2) Studying the complex physics of laser-tissue interaction for tissue differentiation and 3D shape modelling to ensure safe tissue removal, and 3) Integrating information from multiple sensing devices under sensor noise and uncertainties from system calibration.
Targeting these three research problems separately, a computational framework is proposed to provide kinematics and calibration algorithms to control and direct the 3D laser beam through a system with multiple rotary mirrors (to transmit laser beam in free-space) and laser-based sensor inputs. This framework can serve as a base platform for optics-based robotic system designs and solving the motion planning problems related to laser-based robot systems. Simulation experiments have verified the feasibility of the proposed framework and actual experiments have been conducted with an existing robotic laser system on phantom and ex-vivo biological tissues.
To study the complex physics of laser-tissue interaction, a 3D data-driven method is developed to model the geometric relation between the laser energy distribution, laser incident angles, and the tissue deformation resulting from photoablation. The results of the phantom studies have demonstrated the feasibility of applying the trained model for laser crater shape predictions during the surgical planning.
Finally, a research platform, referred as ``TumorMapping", is developed to collect multimodal sensing information from complementary sensors to build a 3D pathological map of a mice tumor surface. This robot system includes a sensor module attached to a 6-DOF robot arm end-effector, based on the laser-induced fluorescence spectroscopy for tissue classification and a fiber couple cutting laser for tissue resection. A benchtop sensor platform is built with an OCT sensor and a stereovision system with two lens camera to collect the tissue information with a non-contact pattern. The robot-sensor and the complementary sensor sub-systems are integrated in a unified platform for the 3D pathological map reconstruction.
In summary, the research contributions include important advancements in laser-based sensor fusion for surgical decision-making which is enabling new capabilities for the use of 3D pathological mapping combined with intelligent robot planning and control algorithms for robotic surgery.
Item Open Access A Data-Intensive Framework for Analyzing Dynamic Supreme Court Behavior(2012) Calloway, Timothy JosephMany law professors and scholars think of the Supreme Court as a black box--issues and arguments go in to the Court, and decisions come out. The almost mystical nature that these researchers impute to the Court seems to be a function of the lack of hard data and statistics about the Court's decisions. Without a robust dataset from which to draw proper conclusions, legal scholars are often left only with intuition and conjecture.
Explaining the inner workings of one of the most important institutions in the United States using such a subjective approach is obviously flawed. And, indeed, data is available that can provide researchers with a better understanding of the Court's actions, but scholars have been slow in adopting a methodology based on data and statistical analysis. The sheer quantity of available data is overwhelming and might provide one reason why such an analysis has not yet been undertaken.
Relevant data for these studies is available from a variety of sources, but two in particular are of note. First, legal database provider LexisNexis provides a huge amount of information about how the Court's opinions are treated by subsequent opinions; thus, if the Court later overrules one of its earlier opinions, that information is captured by LexisNexis. Second, researchers at Washington University in St. Louis have compiled a database that provides detailed information about each Supreme Court decision. Combining these two sources into a coherent database will provide a treasure trove of results for future researchers to study, use, and build upon.
This thesis will explore a first-of-its-kind attempt to parse these massive datasets to provide a powerful tool for future researchers. It will also provide a window to help the average citizen understand Supreme Court behavior more clearly. By utilizing traditional data extraction and dataset analysis methods, many informative conclusions can be reached to help explain why the Court acts the way it does. For example, the results show that decisions decided by a narrow margin (i.e., by a 5 to 4 vote) are almost 4x more likely to be overruled than unanimous decisions by the Court. Many more results like these can be synthesized from the dataset and will be presented in this thesis. Possibly of higher importance, this thesis presents a framework to predict the outcomes of future and pending Supreme Court cases using statistical analysis of the data gleaned from the dataset.
In the end, this thesis strives to provide input data as well as results data for future researchers to use in studying Supreme Court behavior. It also provides a framework that researchers can use to analyze the input data to create even more results data.
Item Open Access A Logical Controller Architecture for Network Security(2020) Yao, YuanjunNetworked infrastructure-as-a-service testbeds are evolving with higher capacity and more advanced capabilities. Modern testbeds offer stitched virtual circuit capability, programmable dataplanes with software-defined networking (SDN), and in-network processing on adjacent cloud servers. With these capabilities they are able to host virtual network service providers (NSPs) that peer and exchange traffic with edge subnets and with other NSPs in the testbeds. Testbed tenants may configure and program their NSPs to provide a range of functions and capabilities. Programmable NSPs enable innovation in network services and protocols following the pluralist philosophy of network architecture.
Advancing testbeds offer an opportunity to harness their power to deploy production NSPs with topology and value-added features tailored to the needs of specific user communities. For example, one objective of this research is to define abstractions and tools to support built-to-order virtual science networks for data-intensive science collaborations that share and exchange datasets securely at high speed. A virtual science network may combine dedicated high-speed circuits on advanced research fabrics with integrated in-network processing on virtual cloud servers, and links to exchange traffic with customer campus networks and/or testbed slices. We propose security-managed science networks with additional security features including access control, embedded virtual security appliances, and managed connectivity according to customer policy. A security-managed NSP is in essence a virtual software-defined exchange (SDX) that applies customer-specified policy to mediate connectivity.
This dissertation proposes control abstractions for dynamic NSPs, with a focus on managing security in the control plane based on programmable security policy. It defines an architecture for automated NSP controllers that orchestrate and program an NSP's SDN dataplane and manage its interactions with customers and peer NSPs. A key element of the approach is to use declarative trust logic to program the control plane: all control-plane interactions---including route advertisements, address assignments, policy controls, and governance authority---are represented as signed statements in a logic (trust datalog). NSP controllers use a logical inference engine to authorize all interactions and check for policy compliance.
To evaluate these ideas, we develop the ExoPlex controller framework for secure policy-based networking over programmable network infrastructures. An ExoPlex NSP combines a logical NSP controller with an off-the-shelf SDN controller and an existing trust logic platform (SAFE), both of which were enhanced for this project. Experiments with the software on testbeds---ExoGENI, ESnet, and Chameleon---demonstrate the power and potential of the approach. The dissertation presents the research in four parts.
The first part introduces the foundational capabilities of research testbeds that enables the approach, and presents the design of the ExoPlex controller framework to leverage those capabilities for hosted NSPs. We demonstrate a proof-of-concept deployment of an NSP with network function virtualization, an elastic dataplane, and managed traffic security on the ExoGENI testbed.
The second part introduces logical trust to structure control-plane interactions and program security policy. We show how to use declarative trust logic to address the challenges for managing identity, resource access, peering, connectivity and secure routing. We present off-the-shelf SAFE logic templates and rules to demonstrate a virtual SDX that authorizes network stitching and connectivity with logical trust.
The third part applies the controller architecture to secure policy-based interdomain routing among transit NSPs based on a logical trust plane. Signed logic exchanges propagate advertised routes and policies through the network. We show that trust logic rules capture and represent current and evolving Internet security protocols, affording protection equivalent to BGPsec for secure routing and RPKI for origin authentication. The logic also supports programmable policy for managed connectivity with end-to-end trust, allowing customers to permission the NSPs so that customer traffic does not pass through untrusted NSPs (path control).
The last part introduces SCIF, which extends logical peering and routing to incorporate customizable policies to defend against packet spoofing and route leaks. It uses trust logic to define more expressive route advertisements and compliance checks to filter advertisements that propagate outside of their intended scope. For SCIF, we extended the ExoPlex SDN dataplanes to configure ingress packet filters automatically from accepted routes (unicast Reverse Path Forwarding). We present logic templates that capture the defenses of valley-free routing and the Internet MANRS approach based on a central database of route ingress/egress policies (RADb/RPSL). We show how to extend their expressive power for stronger routing security, and complement it with path control policies that constrain the set of trusted NSPs for built-to-order internetworks.
Item Open Access A New Take on Gamification: Playing the Culture Shock Experience in a Digital Card Game(2020) Yan, AnniIn 2018-2019, over 1 million international students from all over the world come to the United States to seek higher education. Along with their hope for quality education, they bring their own cultures. The clash of the United States (US) culture and the foreign culture produces “culture shock”, the progress of learning and adjusting to new environments. This process of working through culture shock, which can take from days to months, exposes the foreign students to loneliness, depression, and lack of belonging. International students also face challenges from language barriers, identity crises, and mental distress. To cope with the stress, they might choose to remain in their comfort zone and isolate themselves from other cultures, but this prevents them from taking full advantage of their new environment and communities. Many institutions offer programs to help students from different backgrounds to embrace diversity by hosting student groups, culture fest, and seminars. They have tried to solve this problem, but for many individuals, it is still difficult to encounter culture shock.This thesis analyzes the effects of culture shocks, the usage of games in empathy building, and aid in the understanding of cultural barriers. It first explores the challenges international students face and their coping strategies. It then surveys research into existing empathy-building games that have shown a positive impact on the targeted audience. Finally, the thesis introduces a digital card game, Cultivated, which was developed to act upon these research findings and to create an experience that helps to address the issue of cultural shock. The game is designed for domestic students to discover cultural differences. The players are asked to develop a new culture of communication together, to experience “culture shock”, and most importantly learn about each other’s culture in real life by exploring the following five aspects of the phenomenon: language, value, symbol, norm, and ritual. The paper argues that a gamified approach to the problem, a digital card game thematized around addressing culture shock, can help tell the story of international students to others and themselves and that playing the game can help break down cultural barriers.
Item Open Access A NEW ZEROTH-ORDER ORACLE FOR DISTRIBUTED AND NON-STATIONARY LEARNING(2021) Zhang, YanZeroth-Order (ZO) methods have been applied to solve black-box or simulation-based optimization prroblems. These problems arise in many important applications nowa- days, e.g., generating adversarial attacks on machine learning systems, learning to control the system with complicated physics structure or human in the loop. In these problem settings, the objective function to optimize does not have an explicit math- ematical form and therefore its gradient cannot be obtained. This invalidates all gradient-based optimization approaches. On the other hand, ZO methods approxi- mate the gradient by using the objective function values. Many existing ZO methods adopt the two-point feedback scheme to approximate the unknown gradient due to its low estimation variance and fast convergence speed. Specifically, two-point ZO method estimates the gradient at the current iterate of the algorithm by querying the objective function value twice at two distinct neighbor points around the current iterate. Such scheme becomes infeasible or difficult to implement when the objective function is time-varying, or when multiple agents collaboratively optimize a global objective function that depends on all agents’ decisions, because the value of the objective function can be queried only once at a single decision point. However, con- ventional ZO method based on one-point feedback is subject to large variance of the gradient estimation and therefore slows down the convergence.
In this dissertation, we propose a novel one-point ZO method based on the residual feedback. Specifically, the residual feedback scheme estimates the gradient using the residual between the values of the objective function at two consecutive iterates of the algorithm. When optimizing a deterministic Lipschitz function, we show that the query complexity of ZO with the proposed one-point residual feedback matches that of ZO with the existing two-point schemes. Moreover, the query complexity of the proposed algorithm can be improved when the objective function has Lipschitz gradient. Then, for stochastic bandit optimization problems, we show that ZO with one-point residual feedback achieves the same convergence rate as that of two-point scheme with uncontrollable data samples.
Next, we apply the proposed one-point residual-feedback gradient estimator to solve online optimizaiton problems, where the objective function varies over time. In the online setting, since each objective function can only be evaluated once at a single decision point, existing two-point ZO methods are not feasible and only one-point ZO methods can be used. We develop regret bounds for ZO with the proposed one- point residual feedback scheme for both convex and nonconvex online optimization problems. Specifically, for both deterministic and stochastic problems and for both Lipschitz and smooth objective functions, we show that using residual feedback can produce gradient estimates with much smaller variance compared to conventional one- point feedback methods. As a result, our regret bounds are much tighter compared to existing regret bounds for ZO with conventional one-point feedback, which suggests that ZO with residual feedback can better track the optimizer of online optimization problems. Additionally, our regret bounds rely on weaker assumptions than those used in conventional one-point feedback methods.
The proposed residual-feedback scheme is next decentralized to conduct dis- tributed policy optimization in the multi-agent reinforcement learning (MARL) prob- lems. Existing MARL algorithms often assume that every agent can observe the states and actions of all the other agents in the network. This can be impractical in large-scale problems, where sharing the state and action information with multi-hop neighbors may incur significant communication overhead. The advantage of the pro- posed zeroth-order policy optimization method is that it allows the agents to compute the local policy gradients needed to update their local policy functions using local estimates of the global accumulated rewards that depend on partial state and action information only and can be obtained using consensus. Specifically, the local ZO policy gradients relying on one-point residual-feedback significantly reduces the vari- ance of the local policy gradient estimates compared to the conventional one-point policy gradient estimates, improving, in this way, the learning performance. We show that the proposed distributed zeroth-order policy optimization method with constant stepsize converges to a neighborhood of the global optimal policy that depends on the number of consensus steps used to calculate the local estimates of the global accumulated rewards.Another challenge in the distributed ZO optimization problems is that the agents may conduct local updates in an asynchronous fashion when they do not have ac- cess to a global clock. To deal with this challenge, we propose an asynchronous zeroth-order distributed optimization method that relies on the proposed one-point residual feedback gradient estimator. We show that this estimator is unbiased under asynchronous updating, and theoretically analyze its convergence. We demonstrate the effectiveness of all proposed algorithms via extensive numerical experiments.
Item Open Access A Privacy Preserving Algorithm to Release Sparse High-dimensional Histograms(2017) Li, BaiDifferential privacy (DP) aims to design methods and algorithms that satisfy rigorous notions of privacy while simultaneously providing utility with valid statistical inference. More recently, an emphasis has been placed on combining notions of statistical utility with algorithmic approaches to address privacy risk in the presence of big data---with differential privacy emerging as a rigorous notion of risk. While DP provides strong guarantees for privacy, there are often tradeoffs regarding data utility and computational scalability. In this paper, we introduce a categorical data synthesizer that releases high-dimensional sparse histograms, illustrating its ability to overcome current limitations with data synthesizers in the current literature. Specifically, we combine a differential privacy algorithm---the stability based algorithm--- along with feature hashing, with allows for dimension reduction in terms of the histograms and Gibbs sampling. As a result, our proposed algorithm is differentially private, offers similar or better statistical utility and is scalable to large databases. In addition, we give an analytical result for the error caused by the stability based algorithm, which allows us to control the loss of utility. Finally, we study the behavior of our algorithm on both simulated and real data.
Item Open Access A Q-Learning Approach to Minefield Characterization from Unmanned Aerial Vehicles(2012) Daugherty, Stephen GreysonThe treasure hunt problem to determine how a computational agent can maximize its ability to detect and/or classify multiple targets located in a region of interest (ROI) populated with multiple obstacles. One particular instance of this problem involves optimizing the performance of a sensor mounted on an unmanned aerial vehicle (UAV) flying over a littoral region in order to detect mines buried underground.
Buried objects (including non-metallic ones) have an effect on the thermal conductivity and heat retention of the soil in which they reside. Because of this, objects that are not very deep below the surface often create measurable thermal anomalies on the surface soil. Because of this, infrared (IR) sensors have the potential to find mines and minelike objects (referred to in this thesis as clutters).
As the sensor flies over the ROI, sensor data is obtained. The sensor receives the data as pixellated infrared light signatures. Using this, ground temperature measurements are recorded and used to generate a two-dimensional thermal profile of the field of view (FOV) and map that profile onto the geography of the ROI.
The input stream of thermal data is then passed to an image processor that estimates the size and shape of the detected target. Then a Bayesian Network (BN) trained from a database of known mines and clutters is used to provide the posterior probability that the evidence obtained by the IR sensor for each detected target was the result of a mine or a clutter. The output is a confidence level (CL), and each target is classified as a mine or a clutter according to the most likely explanation (MLE) for the sensor evidence. Though the sensor may produce incomplete, noisy data, inferences from the BN attenuate the problem.
Since sensor performance depends on altitude and environmental conditions, the value of the IR information can be further improved by choosing the flight path intelligently. This thesis assumes that the UAV is flying through an environmentally homogeneous ROI and addresses the question of how the optimal altitude can be determined for any given multi-dimensional environmental state.
In general, high altitudes result in poor resolution, whereas low altitudes result in very limited FOVs. The problem of weighing these tradeoffs can be addressed by creating a scoring function that is directly dependent on a comparison between sensor outputs and ground truth. The scoring function provides a flexible framework through which multiple mission objectives can be addressed by assigning different weights to correct detections, correct non-detections, false detections, and false non-detections.
The scoring function provides a metric of sensor performance that can be used as feedback to optimize the sensor altitude as a function of the environmental conditions. In turn, the scoring function can be empirically evaluated over a number of different altitudes and then converted to empirical Q scores that also weigh future rewards against immediate ones. These values can be used to train a neural network (NN). The NN filters the data and interpolates between discrete Q-values to provide information about the optimal sensor altitude.
The research described in this thesis can be used to determine the optimal control policy for an aircraft in two different situations. The global maximum of the Q-function can be used to determine the altitude at which a UAV should cruise over an ROI for which the environmental conditions are known a priori. Alternatively, the local maxima of the Q-function can be used to determine the altitude to which a UAV should move if the environmental variables change during flight.
This thesis includes the results of computer simulations of a sensor flying over an ROI. The ROI is populated with targets whose characteristics are based on actual mines and minelike objects. The IR sensor itself is modeled by using a BN to create a stochastic simulation of the sensor performance. The results demonstrate how Q-learning can be applied to signals from a UAV-mounted IR sensor whose data stream is preprocessed by a BN classifier in order to determine an optimal flight policy for a given set of environmental conditions.
Item Open Access A Semi-Supervised Predictive Model to Link Regulatory Regions to Their Target Genes(2015) Hafez, Dina MohamedNext generation sequencing technologies have provided us with a wealth of data profiling a diverse range of biological processes. In an effort to better understand the process of gene regulation, two predictive machine learning models specifically tailored for analyzing gene transcription and polyadenylation are presented.
Transcriptional enhancers are specific DNA sequences that act as ``information integration hubs" to confer regulatory requirements on a given cell. These non-coding DNA sequences can regulate genes from long distances, or across chromosomes, and their relationships with their target genes are not limited to one-to-one. With thousands of putative enhancers and less than 14,000 protein-coding genes, detecting enhancer-gene pairs becomes a very complex machine learning and data analysis challenge.
In order to predict these specific-sequences and link them to genes they regulate, we developed McEnhancer. Using DNAseI sensitivity data and annotated in-situ hybridization gene expression clusters, McEnhancer builds interpolated Markov models to learn enriched sequence content of known enhancer-gene pairs and predicts unknown interactions in a semi-supervised learning algorithm. Classification of predicted relationships were 73-98% accurate for gene sets with varying levels of initial known examples. Predicted interactions showed a great overlap when compared to Hi-C identified interactions. Enrichment of known functionally related TF binding motifs, enhancer-associated histone modification marks, along with corresponding developmental time point was highly evident.
On the other hand, pre-mRNA cleavage and polyadenylation is an essential step for 3'-end maturation and subsequent stability and degradation of mRNAs. This process is highly controlled by cis-regulatory elements surrounding the cleavage site (polyA site), which are frequently constrained by sequence content and position. More than 50\% of human transcripts have multiple functional polyA sites, and the specific use of alternative polyA sites (APA) results in isoforms with variable 3'-UTRs, thus potentially affecting gene regulation. Elucidating the regulatory mechanisms underlying differential polyA preferences in multiple cell types has been hindered by the lack of appropriate tests for determining APAs with significant differences across multiple libraries.
We specified a linear effects regression model to identify tissue-specific biases indicating regulated APA; the significance of differences between tissue types was assessed by an appropriately designed permutation test. This combination allowed us to identify highly specific subsets of APA events in the individual tissue types. Predictive kernel-based SVM models successfully classified constitutive polyA sites from a biologically relevant background (auROC = 99.6%), as well as tissue-specific regulated sets from each other. The main cis-regulatory elements described for polyadenylation were found to be a strong, and highly informative, hallmark for constitutive sites only. Tissue-specific regulated sites were found to contain other regulatory motifs, with the canonical PAS signal being nearly absent at brain-specific sites. We applied this model on SRp20 data, an RNA binding protein that might be involved in oncogene activation and obtained interesting insights.
Together, these two models contribute to the understanding of enhancers and the key role they play in regulating tissue-specific expression patterns during development, as well as provide a better understanding of the diversity of post-transcriptional gene regulation in multiple tissue types.
Item Open Access A Theoretical and Experimental Study of DNA Self-assembly(2012) Chandran, HarishThe control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation.
A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly.
We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible.
We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms.
We simulate DNA circuits by providing detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates via enzyme-free DNA hybridization reaction cascades. We use the Visual DSD simulation software in conjunction with localized reaction rates obtained from biophysical modeling to create chemical reaction networks of localized hybridization circuits that are then model checked using the PRISM model checking software.
We develop a DNA detection system employing the triggered self-assembly of a novel DNA dendritic nanostructure. Detection begins when a specific, single-stranded target DNA strand triggers a hybridization chain reaction between two distinct DNA hairpins. Each hairpin opens and hybridizes up to two copies of the other, and hence each layer of the growing dendritic nanostructure can in principle accommodate an exponentially increasing number of cognate molecules, generating a nanostructure with high molecular weight.
We build linear activatable assemblies employing a novel protection/deprotection strategy to strictly enforce the direction of tiling assembly growth to ensure the robustness of the assembly process. Our system consists of two tiles that can form a linear co-polymer. These tiles, which are initially protected such that they do not react with each other, can be activated to form linear co-polymers via the use of a strand displacing enzyme.
Item Open Access Accelerating Data Parallel Applications via Hardware and Software Techniques(2020) Bashizade, RaminThe unprecedented amount of data available today opens the door to many new applications in areas such as finance, scientific simulation, machine learning, etc. Many such applications perform the same computations on different data, which are called data-parallel. However, processing this enormous amount of data is challenging, especially in the post-Moore's law era. Specialized accelerators are a promising solution to meet the performance requirements of data-parallel applications. Among these are graphics processing units (GPUs), as well as more application-specific solutions.
One of the areas with high performance requirements is statistical machine learning, which has widespread applications in various domains. These methods include probabilistic algorithms, such as Markov Chain Monte-Carlo (MCMC), which rely on generating random numbers from probability distributions. These algorithms are computationally expensive on conventional processors, yet their statistical properties, namely, interpretability and uncertainty quantification compared to deep learning, make them an attractive alternative approach. Therefore, hardware specialization can be adopted to address the shortcomings of conventional processors in running these applications.
In addition to hardware techniques, probabilistic algorithms can benefit from algorithmic optimizations that aim to avoid performing unnecessary work. To be more specific, we can skip a random variable (RV) whose probability distribution function (PDF) is concentrated on only one value, i.e., there is only one value to choose, and the values of its neighboring RVs have not changed. In other words, if a RV has a concentrated PDF, its PDF will remain concentrated until at least one of its neighbors changes. Due to their high throughput and centralized scheduling mechanism, GPUs are a suitable target for this optimization.
Other than probabilistic algorithms, GPUs can be utilized to accelerate a variety of applications. GPUs with their Single-Instruction Multiple-Thread (SIMT) execution model offer massive parallelism that is combined with a relative ease of programming. The large amount and diversity of resources on the GPU is intended to ensure applications with different characteristics can achieve high performance, but at the same time it means that some of these resources will remain under-utilized, which is inefficient in a multi-tenant environment.
In this dissertation, we propose and evaluate solutions to the challenges mentioned above, namely i) accelerating probabilistic algorithms with uncertainty quantification, ii) optimizing probabilistic algorithms on GPUs to avoid unnecessary work, and iii) increasing resource utilization of GPUs in multi-tenant environments.
Item Open Access Accelerator Architectures for Deep Learning and Graph Processing(2020) Song, LinghaoDeep learning and graph processing are two big-data applications and they are widely applied in many domains. The training of deep learning is essential for inference and has not yet been fully studied. With data forward, error backward, and gradient calculation, deep learning training is a more complicated process with higher computation and communication intensity. Distributing computations on multiple heterogeneous accelerators to achieve high throughput and balanced execution, however, remaining challenging. In this dissertation, I present AccPar, a principled and systematic method of determining the tensor partition for multiple heterogeneous accelerators for efficient training acceleration. Emerging resistive random access memory (ReRAM) is promising for processing in memory (PIM). For high-throughput training acceleration in ReRAM-based PIM accelerator, I present PipeLayer, an architecture for layer-wise pipelined parallelism. Graph processing is well-known for poor locality and high memory bandwidth demand. In conventional architectures, graph processing incurs a significant amount of data movements and energy consumption. I present GraphR, the first ReRAM-based graph processing accelerator which follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. Sparse matrix-vector multiplication (SpMV), a subset of graph processing, is the key computation in iterative solvers for scientific computing. The efficiently accelerating floating-point processing in ReRAM remains a challenge. In this dissertation, I present ReFloat, a data format, and a supporting accelerator architecture, for low-cost floating-point processing in ReRAM for scientific computing.
Item Open Access Advances in Log-concave Sampling and Domain Adaptation(2023) Wu, KeruIn the vast field of machine learning, the study of distributions and the innovation of algorithms driving from them serve as foundation pursuits. This dissertation delves into two critical topics tied to distributions: log-concave sampling and domain adaptation. Our research encompasses both theoretical and methodological developments in these fields, supported by thorough numerical experiments.
Beginning with log-concave sampling, we establish the minimax mixing time of the Metropolis-adjusted Langevin algorithm (MALA) for sampling from a log-smooth and strongly log-concave distribution. Our proof is divided into two main components: an upper bound and a lower bound. First, for a d-dimensional log-concave density with condition number $\kappa$, we show that MALA with a warm start mixes in $\tilde O(\kappa\sqrt(d))$ iterations up to logarithmic factors. Second, we prove a spectral gap based mixing time lower bound for reversible MCMC algorithms on general state spaces. We apply this lower bound result to construct a hard distribution for which MALA requires at least $\tilde\Omega(\kappa\sqrt{d})$ steps to mix. The lower bound aligns with our upper bound in terms of condition number and dimension, thereby demonstrating the minimax mixing time of MALA for log-concave sampling.
Shifting focus to Domain Adaptation (DA), we tackle the statistical learning problem where the distribution of the source data used to train a model differs from that of the target data used to evaluate the model. Our work is grounded in assumption of the presence of conditionally invariant components (CICs) --- feature representations that are relevant for prediction and remain conditionally invariant across the source and target distributions. We demonstrate three prominent roles of CICs in providing target risk guarantees in DA. First, we propose a new algorithm based on CICs, importance-weighted conditional invariant penalty (IW-CIP), which has target risk guarantees beyond simple settings such as covariate shift and label shift. Second, we show that CICs help identify large discrepancies between source and target risks of other DA algorithms. Finally, we demonstrate that incorporating CICs into the domain invariant projection (DIP) algorithm can address its failure scenario caused by label-flipping features.
Through rigorous analysis, we advance insights into log-concave sampling and domain adaptation. Our exploration underscores the importance of probabilistic understanding in designing algorithms tailored to intricate data distributions encountered in machine learning.
Item Open Access Advancing Deep-Generated Speech and Defending against Its Misuse(2023) Cai, ZexinDeep learning has revolutionized speech generation, spanning synthesis areas such as text-to-speech and voice conversion, leading to diverse advancements. On the one hand, when trained on high-quality datasets, artificial voices now exhibit a level of synthesized quality that rivals human speech in naturalness. On the other, cutting-edge deep synthesis research is making strides in producing controllable systems, allowing for generating audio signals in arbitrary voice and speaking style.
Yet, despite their impressive synthesis capabilities, current speech generation systems still face challenges in controlling and manipulating speech attributes. Control over crucial attributes, such as speaker identity and language, essential for enhancing the functionality of a synthesis system, still needs to be improved. Specifically, systems capable of cloning a target speaker's voice in cross-lingual contexts or replicating unseen voices are still in their nascent stages. On the other hand, the heightened naturalness of synthesized speech has raised concerns, posing security threats to both humans and automated speech processing systems. The rise of accessible audio deepfakes, capable of spreading misinformation or bypassing biometric security, accentuates the complex interplay between advancing and defencing against deep-synthesized speech.
Consequently, this dissertation delves into the dynamics of deep-generated speech, viewing it from two perspectives. Offensively, we aim to enhance synthesis systems to elevate their capabilities. On the defensive side, we introduce methodologies to counter emerging audio deepfake threats, offering solutions grounded in detection-based approaches and reliable synthesis system design.
Our research yields several noteworthy findings and conclusions. First, we present an improved voice cloning method incorporated with our novel feedback speaker consistency mechanism. Second, we demonstrate the feasibility of achieving cross-lingual multi-speaker speech synthesis with a limited amount of bilingual data, offering a synthesis method capable of producing diverse audio across various speakers and languages. Third, our proposed frame-level detection model for partially fake audio attacks proves effective in detecting tampered utterances and locating the modified regions within. Lastly, by employing an invertible synthesis system, we can trace back to the original speaker of a converted utterance. Despite these strides, each domain of our study still confronts challenges, further fueling our motivation for persistent research and refinement of the associated performance.
Item Embargo Advancing Polyhydroxyalkanoate Biopolymer Material Design: Integrating Machine Learning and Experimental Validation(2024) Lalonde, Jessica NicoleVirtually every consumer product available on the market today contains some form of fossil fuel-based polymer. However, these materials pose environmental, human health, and economic concerns due to their enduring presence in the global ecosystem and their degradation products. Addressing this crisis necessitates scalable production of biodegradable alternatives, such as polyhydroxyalkanoates (PHAs). PHAs are presented as promising substitutes due to their biodegradability, biocompatibility, and the potential for complete renewable utilization post-degradation, but a current challenge to widespread use of these materials lies in understanding the quantitative relationship between the structural characteristics of PHAs, their environmental interactions, and their degradation rates to enhance their industrial production and distribution. To bridge this knowledge gap, the dissertation outlines a comprehensive approach involving the development of a specialized dataset, the application of machine learning (ML) models to predict degradation rates based on structural and environmental factors, and the experimental validation of these predictions. The first part of this research focuses on assembling a manually curated dataset from the extensive, available open-access literature, aimed at understanding the effects of structural and environmental features on PHA degradation. The second part leverages this dataset through ML modeling, employing techniques like random forest regression to predict degradation profiles with over 80% accuracy. This methodology enables a deeper understanding of the complex interplay between chemical structures and degradation properties, surpassing traditional trial-and-error approaches. The final part of this research aims to complete an iterative workflow for dataset development by validating ML model predictions through physical experiments, enriching the original dataset with comprehensive experimental data on PHA degradation in hydrolytic environments with contact angle, molecular weight, and thermal property characterizations. The incorporation of experimental findings into the ML dataset, particularly through expanded ML techniques that emphasize pairwise feature importance such as explainable boosting machines (EBM), helps in pinpointing critical factors influencing PHA degradation, such as environmental temperature and material properties. The model performances indicate a strong performance of manually assembled literature-based datasets when predicting degradation rate for PHAs. In conclusion, a data science-based framework has been developed for exploring PHA biopolyester degradation and explores the combination of features of the material and its environment that integrates the structure, properties, and experimentally verified degradation profiles of the material. This workflow will be a useful and generalizable pipeline for PHAs and other polymers to expand the biopolymer design space with degradation in mind.
Item Unknown Advancing the Design and Utility of Adversarial Machine Learning Methods(2021) Inkawhich, Nathan AlbertWhile significant progress has been made to craft Deep Neural Networks (DNNs) with super-human recognition performance, their reliability and robustness in challenging operating conditions is still a major concern. In this work, we study multiple facets of the DNN robustness problem by pursuing two main threads of research. The key methodological linkage throughout our investigations is the consistent design/development/utilization/deployment of Adversarial Machine Learning techniques, which have remarkable abilities to both degrade and enhance model performance. Our ultimate goal is to help construct the more safe and reliable models of the future.
In the first thread of research, we take the perspective of an adversary who wishes to find novel and increasingly potent ways to fool current DNN models. Our approach is centered around the development of a feature space attack, and the construction of novel adversarial threat models that work to reduce required knowledge assumptions. Interestingly, we find that a transfer-based blackbox adversary can be significantly more powerful than previously believed, and can reliably cause targeted misclassifications with imperceptible noises. Further, we find that the attacker does not necessarily require access to the target model's training distribution to create transferable attacks, which is a more practically concerning scenario due to the reduction of required attacker knowledge.
Along the second thread of research, we take the perspective of a DNN model designer whose job is to create systems capable of robust operation in ``open-world'' environments, where both known and unknown target types may be encountered. Our approach is to establish a classifier + out-of-distribution (OOD) detector system co-design that is centered around an adversarial training procedure and an outlier exposure-based learning objective. Through various experiments, we find that our systems can achieve high accuracy in extended operating conditions, while reliably detecting and rejecting fine-grained OOD target types. We also develop a method for efficiently improving OOD detection by learning from the deployment environment. Overall, by exposing novel vulnerabilities of current DNNs while also improving the reliability of existing models to known vulnerabilities, our work makes significant progress towards creating the next-generation of more trustworthy models.
Item Open Access ADVANCING VISION INTELLIGENCE THROUGH THE DEVELOPMENT OF EFFICIENCY, INTERPRETABILITY AND FAIRNESS IN DEEP LEARNING MODELS(2024) Kong, FanjieDeep learning has demonstrated remarkable success in developing vision intelligence across a variety of application domains, including autonomous driving, facial recognition, medical image analysis, \etc.However, developing such vision systems poses significant challenges, particularly in relation to ensuring efficiency, interpretability, and fairness. Efficiency requires a model to leverage the least possible computational resources while preserving performance relative to more computationally-demanding alternatives, which is essential for the practical deployment of large-scale models in real-time applications. Interpretability demands a model to align with the domain-specific knowledge of the task it addresses while having the capability for case-based reasoning. This characteristic is especially crucial in high-stakes areas such as healthcare, criminal justice, and financial investment. Fairness ensures that computer vision models do not perpetuate or exacerbate societal biases in downstream applications such as web image search, text-guided image generation, \etc. In this dissertation, I will discuss the contributions that I have made in advancing vision intelligence regarding to efficiency, interpretability and fairness in computer vision models.
The first part of this dissertation will focus on how to design computer vision models to efficiently process very large images.We propose a novel CNN architecture termed { \em Zoom-In Network} that leverages a hierarchical attention sampling mechanisms to select important regions of images to process. Such approach without processing the entire image yields outstanding memory efficiency while maintaining classification accuracy on various tiny object image classification datasets.
The second part of this dissertation will discuss how to build post-hoc interpretation method for deep learning models to obtain insights reasoned from the predictions.We propose a novel image and text insight-generation framework based on attributions from deep neural nets. We test our approach on an industrial dataset and demonstrate our method outperforms competing methods.
Finally, we study fairness in large vision-language models.More specifically, we examined gender and racial bias in text-based image retrieval for neutral text queries. In an attempt to address bias in the test-time phase, we proposed post-hoc bias mitigation to actively balance the demographic group in the image search results. Experiments on multiple datasets show that our method can significantly reduce bias while maintaining satisfactory retrieval accuracy at the same time.
My research in enhancing vision intelligence via developments in efficiency, interpretability, and fairness, has undergone rigorous validation using publicly available benchmarks and has been recognized at leading peer-reviewed machine learning conferences.This dissertation has sparked interest within the AI community, emphasizing the importance of improving computer vision models through these three critical dimensions, namely, efficiency, interpretability and fairness.
Item Open Access Algorithms for Allocation Problems in Online Settings(2018) Kell, Nathaniel BrianA fundamental computational challenge that arises in the operation of online systems, services, and platforms is that of resource allocation. Broadly defined, a resource allocation problem is one where set of users generate demands, which then have to be satisfied using a limited set of resources. In many of these scenarios, requests and jobs arrive in an online sequence, meaning they arrive over time and must be allocated without knowledge of future requests.
In this thesis, we examine resource allocation problems in online settings, focusing on problems in data center scheduling and internet advertising. Our results are summarized as follows.
• Vector Scheduling: We resolve the complexity of the vector scheduling problem, a variant of the classic load balancing problem first considered by Graham, where jobs have vectors loads (as opposed to a single scalar). We study the problem in the three classical settings—identical, unrelated, and related—giving competitive algorithms for optimizing generic q-norms of the machines loads. In each setting we show these algorithm are optimal by giving asymptotically matching lower bounds. Also as a consequence of these results, we give the first constant competitive algorithm for optimizing q-norms on related machines in the scalar setting.
• Budgeted Allocation: We study a variant of the online budgeted allocation (also called AdWords) problem where advertising budgets are expressed over multiple tiers of user-attribute granularity. We show that, unlike in the single-budget AdWords problem, obtaining a constant competitive ratio is impossible and give asymptotically tight upper and lower bounds. However, we then observe that in many real-world scenarios, multi-tier budgets have a laminar structure. In this setting we obtain a competitive ratio of e/(e−1) in the small bids case, which matches the best known AdWords result for single budgets.
Item Open Access Algorithms for Analyzing Spatio-Temporal Data(2018) Nath, AbhinandanIn today's age, huge data sets are becoming ubiquitous. In addition to their size, most of these data sets are often noisy, have outliers, and are incomplete. Hence, analyzing such data is challenging. We look at applying geometric techniques to tackle some of these challenges, with an emphasis on designing provably efficient algorithms. Our work takes two broad approaches -- distributed algorithms, and concise descriptors for big data sets.
With the massive amounts of data available today, it is common to store and process data using multiple machines. Parallel programming frameworks such as MapReduce and its variants are becoming popular for handling such large data. We present the first provably efficient algorithms to compute, store, and query data structures for range queries and approximate nearest neighbor queries in a popular parallel computing abstraction that captures the salient features of MapReduce and other massively parallel communication (MPC) models. Our algorithms are competitive in terms of running time and workload to their classical counterparts.
We propose parallel algorithms in the MPC model for processing large terrain elevation data (represented as a 3D point cloud) that are too big to fit on one machine. In particular, we present a simple randomized algorithm to compute the Delaunay triangulation of the $xy$-projections of the input points. Next we describe an efficient algorithm to compute the contour tree (a topological descriptor that succinctly encodes the contours of a terrain) of the resulting triangulated terrain.
We then look at comparing real-valued functions, by computing a distance function between their merge trees (a small-sized descriptor that succinctly captures the sublevel sets of a function). Merge trees are robust to noise in the data, and can be used effectively as proxies for the data sets themselves in some cases. We also use it give an algorithm to compute the Gromov-Hausdorff distance, a natural way to measure distance between two metric spaces. We give the first proof of hardness and the first non-trivial approximation algorithm for computing the Gromov-Hausdorff distance between metric spaces defined on trees, where the distance between two points is given by the length of the unique path between them in the tree.
Finally we look at the problem of capturing shared portions between large number of input trajectories. We formulate it as a subtrajectory clustering problem - the clustering of subsequences of trajectories. We propose a new model for clustering subtrajectories. Each cluster of subtrajectories is represented as a \emph{pathlet}, a sequence of points that is not necessarily a subsequence of an input trajectory. We present a single objective function for finding the optimal collection of pathlets that best represents the trajectories taking into account noise and other artifacts of the data. We show that the subtrajectory clustering problem is NP-hard and present fast approximation algorithms. We further improve the running time of our algorithm if the input trajectories are ``well-behaved". We also present experimental results on both real and synthetic data sets.
Item Open Access Algorithms for Clustering, Partitioning, and Planning(2023) Taylor, Erin C.We explore three geometric optimization problems with multifaceted goals, including efficiency, fairness, solution quality, and interpretability. The problems we study pose significant challenges because they involve complex geometric objects that interact in high-dimensional spaces. To contend with these challenges, our work utilizes realistic input structure to design algorithms that provide provably good solutions. Alternatively, we can approach the general problem statement with heuristic or approximate schemes.
The first problem domain addressed is trajectory clustering, where the goal is to partition noisy trajectories (polygonal curves) into clusters based on shared structure and find a representative trajectory for each cluster. We present a near-linear time (1+\eps)-approximation algorithm for k-median clustering of polygonal trajectories under the discrete Fréchet distance and finite point sets under the Hausdorff distance. The algorithm leverages the geometric properties of the trajectories, specifically that centers come from a "simpler" metric space, to achieve efficient clustering results.
The second problem we consider is redistricting, aiming to partition a given population into geographic regions in a fair and representative way. Redistricting involves drawing boundaries for electoral districts, which can significantly impact political representation and decision-making processes. We introduce a new model of fairness for the problem of fair redistricting and investigate the existence and computability of fair partitions. We consider this problem in both one and two dimensions. We also propose a new method of generating redistricting plans that leads to more compact (geometrically "nice") districts.
The final problem addressed is optimal motion planning for multiple robots in polygonal environments with obstacles. Each robot is represented a simple polygonal object, such as a unit disc or square. We present algorithms for generating motion plans which approximately minimize the sum of distances traveled from a start to target configuration. For the simplified case of two robots and given the paths the robots must traverse, we also give an algorithm to minimize the makespan (latest arrival time) of our schedule.