Browsing by Subject "Congo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Chimpanzees and bonobos exhibit divergent spatial memory development.(Dev Sci, 2012-11) Rosati, Alexandra G; Hare, BrianSpatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.Item Open Access Decoupling the effects of logging and hunting on an afrotropical animal community.(Ecol Appl, 2011-07) Poulsen, JR; Clark, CJ; Bolker, BMIn tropical forests, hunting nearly always accompanies logging. The entangled nature of these disturbances complicates our ability to resolve applied questions, such as whether secondary and degraded forest can sustain populations of tropical animals. With the expansion of logging in central Africa, conservation depends on knowledge of the individual and combined impacts of logging and hunting on animal populations. Our goals were (1) to decouple the effects of selective logging and hunting on densities of animal guilds, including apes, duikers, monkeys, elephant, pigs, squirrels, and large frugivorous and insectivorous birds and (2) to compare the relative importance of these disturbances to the effects of local-scale variation in forest structure and fruit abundance. In northern Republic of Congo, we surveyed animals along 30 transects positioned in forest disturbed by logging and hunting, logging alone, and neither logging nor hunting. While sampling transects twice per month for two years, we observed 47 179 animals of 19 species and eight guilds in 1154 passages (2861 km). Species densities varied by as much as 480% among forest areas perturbed by logging and/or hunting, demonstrating the strong effects of these disturbances on populations of some species. Densities of animal guilds varied more strongly with disturbance type than with variation in forest structure, canopy cover, and fruit abundance. Independently, logging and hunting decreased density of some guilds and increased density of others: densities varied from 44% lower (pigs) to 90% higher (insectivorous birds) between logged and unlogged forest and from 61% lower (apes) to 77% higher (frugivorous birds) between hunted and unhunted forest. Their combined impacts exacerbated decreases in populations of some guilds (ape, duiker, monkey, and pig), but counteracted one another for others (squirrels, insectivorous and frugivorous birds). Together, logging and hunting shifted the relative abundance of the animal community away from large mammals toward squirrels and birds. Logged forest, even in the absence of hunting, does not maintain similar densities as unlogged forest for most animal guilds. To balance conservation with the need for economic development and wild meat in tropical countries, landscapes should be spatially managed to include protected areas, community hunting zones, and production forest.Item Open Access Experimental manipulation of seed shadows of an Afrotropical tree determines drivers of recruitment.(Ecology, 2012-03) Poulsen, John R; Clark, Connie J; Bolker, Benjamin MThe loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species.Item Open Access Vertebrate herbivory impacts seedling recruitment more than niche partitioning or density-dependent mortality.(Ecology, 2012-03) Clark, CJ; Poulsen, JR; Levey, DJIn tropical forests, resource-based niches and density-dependent mortality are mutually compatible mechanisms that can act simultaneously to limit seedling populations. Differences in the strengths of these mechanisms will determine their roles in maintaining species coexistence. In the first assessment of these mechanisms in a Congo Basin forest, we quantified their relative strengths and tested the extent to which density-dependent mortality is driven by the distance-dependent behavior of seed and seedling predators predicted by the Janzen-Connell hypothesis. We conducted a large-scale seed addition experiment for five randomly selected tropical tree species, caging a subset of seed addition quadrats against vertebrate predators. We then developed models to assess the mechanisms that determine seedling emergence (three months after seed addition) and survival (two years after seed addition). As predicted, both niche differentiation and density-dependent mortality limited seedling recruitment, but predation had the strongest effects on seedling emergence and survival. Seedling species responded differently to naturally occurring environmental variation among sites, including variation in light levels and soil characteristics, supporting predictions of niche-based theories of tropical tree species coexistence. The addition of higher densities of seeds into quadrats initially led to greater seedling emergence, but survival to two years decreased with seed density. Seed and seedling predation reduced recruitment below levels maintained by density-dependent mortality, an indication that predators largely determine the population size of tree seedlings. Seedling recruitment was unrelated to the distance to or density of conspecific adult trees, suggesting that recruitment patterns are generated by generalist vertebrate herbivores rather than the specialized predators predicted by the Janzen-Connell hypothesis. If the role of seed and seedling predation in limiting seedling recruitment is a general phenomenon, then the relative abundances of tree species might largely depend on species-specific adaptations to avoid, survive, and recover from damage induced by vertebrate herbivores. Likewise, population declines of herbivorous vertebrate species (many of which are large and hunted) may trigger shifts in species composition of tropical forests.