Browsing by Subject "DTI"
Results Per Page
Sort Options
Item Open Access Cerebral white matter connectivity, cognition, and age-related macular degeneration.(NeuroImage. Clinical, 2021-02-23) Zhuang, Jie; Madden, David J; Cunha, Priscila; Badea, Alexandra; Davis, Simon W; Potter, Guy G; Lad, Eleonora M; Cousins, Scott W; Chen, Nan-Kuei; Allen, Kala; Maciejewski, Abigail J; Fernandez, Xuan Duong; Diaz, Michele T; Whitson, Heather EAge-related macular degeneration (AMD) is a common retina disease associated with cognitive impairment in older adults. The mechanism(s) that account for the link between AMD and cognitive decline remain unclear. Here we aim to shed light on this issue by investigating whether relationships between cognition and white matter in the brain differ by AMD status. In a direct group comparison of brain connectometry maps from diffusion weighted images, AMD patients showed significantly weaker quantitative anisotropy (QA) than healthy controls, predominantly in the splenium and left optic radiation. The QA of these tracts, however, did not correlate with the visual acuity measure, indicating that this group effect is not directly driven by visual loss. The AMD and control groups did not differ significantly in cognitive performance.Across all participants, better cognitive performance (e.g. verbal fluency) is associated with stronger connectivity strength in white matter tracts including the splenium and the left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. However, there were significant interactions between group and cognitive performance (verbal fluency, memory), suggesting that the relation between QA and cognitive performance was weaker in AMD patients than in controls.This may be explained by unmeasured determinants of performance that are more common or impactful in AMD or by a recruitment bias whereby the AMD group had higher cognitive reserve. In general, our findings suggest that neural degeneration in the brain might occur in parallel to AMD in the eyes, although the participants studied here do not (yet) exhibit overt cognitive declines per standard assessments.Item Open Access Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.(Magnetic resonance in medicine, 2020-01-21) Wang, Nian; Mirando, Anthony J; Cofer, Gary; Qi, Yi; Hilton, Matthew J; Johnson, G AllanPURPOSE:To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS:Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 μm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS:To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION:High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.Item Open Access Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.(Brain Connect, 2014-11) Song, Allen W; Chang, Hing-Chiu; Petty, Christopher; Guidon, Arnaud; Chen, Nan-KueiRecent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.Item Open Access Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity.(Cereb Cortex, 2015-04) Daselaar, Sander M; Iyengar, Vijeth; Davis, Simon W; Eklund, Karl; Hayes, Scott M; Cabeza, Roberto EThe reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.Item Open Access MR Susceptibility Mapping: Improved Quantification and Applications in Developmental Brain Imaging(2021) Zhang, LijiaThe white matter fibers of the human brain are primarily composed of myelinated axons, which connect different brain regions, transmit neural signals, and form efficient communication pathways that shape the neural systems responsible for higher-order functioning. The fatty myelin sheath protects and insulates the axons and acts as an electrical insulator that facilitates the electrical flow through the axons, and is crucial in the transmission of nerve impulses. Human cognition, sensation and motor functions all rely on the efficient transmission of neural signals, where compromised myelin integrity may lead to severe neurological and physical disorders. Myelin abnormality can be a hallmark of numerous neurological disorders such as cerebral palsy, multiple sclerosis, and autism. Abnormal myelination can be a result of direct damages to the myelin sheath, or indirect causes such as neuro-inflammation which affects the oligodendrocytes that generate the myelin sheath, or even genetic disorders.To approach the pathology and potential therapeutic effects for these neurological disorders, studies have been directed towards the remyelination or repair of the myelin in the central nervous system (CNS). Previously, myelin in the CNS can only be reliably quantified by in vitro methods such as myelin staining and measuring myelin basic protein. Magnetic Resonance Imaging (MRI), with its excellent soft tissue contrast and non-invasive nature, has revolutionized the ways to investigate white matter properties. Several methods in effort to assess the white matter have been developed, such as diffusion tensor imaging (DTI), which has been used to quantify the water diffusion in white matter and thus the connectivity of the brain. However, DTI-derived measurements, while sensitive to white matter microstructural changes, are difficult to interpret due to multiple factors that can alter water diffusion, including axonal membrane, neural tubules, crossing fibers, and myelin. It is possible that either axonal or myelin alternations could impact the conductivity of the fibers and further affect the diffusion measures. Therefore, DTI does not have the specificity to single out the origins of the connectivity change behind neurodegenerative diseases or brain development. Prior studies using quantitative susceptibility mapping (QSM) have shown its unique sensitivity to myelin. However, due to the cylindrical structure of myelin sheaths wrapping around axons, the magnetic susceptibility measured by QSM of the white matter has been found to be dependent on the angular orientations of white matter fibers. Susceptibility Tensor Imaging (STI) has been developed to address this orientation-dependence of susceptibility values in white matter, which requires images acquired from at least 6 non-colinear orientations to solve the susceptibility tensor, and is not practical in clinical settings. Therefore, the goal of this dissertation work is to develop a clinically practical MR susceptibility mapping method to quantitatively assess the magnetic susceptibility anisotropy (MSA) of white matter, which will greatly help us understand the role of myelination in the treatment of neurological diseases and in normal brain development. The work presented here includes the development of the methodology and two in vivo studies to prove its efficacy: (1) The magnetic susceptibility anisotropy in white matter was observed and measured by relating the apparent tissue susceptibility as a function of the white matter angle with respect to the applied magnetic field. A clinically practical solution to estimate the MSA of white matter fibers with QSM images acquired from a single orientation is proposed using prior information obtained through DTI, namely DTI-guided QSM. (2) The DTI-guided QSM methodology was used to investigate the potential mechanism behind the motor function improvement of cerebral palsy (CP) patients who underwent autologous stem cell therapy. Results showed that this motor function improvement was correlated with the connectivity increase in the motor network, and was further traced down to a focal increase of the magnetic susceptibility at the periventricular corticospinal tract (CST), which may indicate an increase in the local myelin content after treatment. (3) This methodology was then applied to profile the myelin maturation pattern of the white matter fiber bundles in pediatric subjects. Results revealed a spatio-temporal myelination pattern of the corpus callosal fibers, which follows a posterior to anterior myelination trajectory with the peak developmental rate spurts at around 2-3 years of age. This result is consistent with previous studies using histological methods and relaxometry-based methods, with better specificity to myelin, and improved consistency across subjects. In conclusion, the proposed DTI-guided QSM has shown its ability to accurately quantify the magnetic susceptibility anisotropy of major fiber tracts with high spatial accuracy and minimal angle dependence, and has addressed its potential in delineating the underlying neural mechanism in neurodevelopmental disorders such as CP, as well as in profiling the myelination pattern during normal brain development. It is anticipated that this quantitative approach may find broader applications to help characterize white matter properties in both healthy and diseased brains across the life span.
Item Open Access The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry.(Front Neurosci, 2012) Nooner, Kate Brody; Colcombe, Stanley J; Tobe, Russell H; Mennes, Maarten; Benedict, Melissa M; Moreno, Alexis L; Panek, Laura J; Brown, Shaquanna; Zavitz, Stephen T; Li, Qingyang; Sikka, Sharad; Gutman, David; Bangaru, Saroja; Schlachter, Rochelle Tziona; Kamiel, Stephanie M; Anwar, Ayesha R; Hinz, Caitlin M; Kaplan, Michelle S; Rachlin, Anna B; Adelsberg, Samantha; Cheung, Brian; Khanuja, Ranjit; Yan, Chaogan; Craddock, Cameron C; Calhoun, Vincent; Courtney, William; King, Margaret; Wood, Dylan; Cox, Christine L; Kelly, AM Clare; Di Martino, Adriana; Petkova, Eva; Reiss, Philip T; Duan, Nancy; Thomsen, Dawn; Biswal, Bharat; Coffey, Barbara; Hoptman, Matthew J; Javitt, Daniel C; Pomara, Nunzio; Sidtis, John J; Koplewicz, Harold S; Castellanos, Francisco Xavier; Leventhal, Bennett L; Milham, Michael PThe National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is a response to this need. NKI-RS is an ongoing, institutionally centered endeavor aimed at creating a large-scale (N > 1000), deeply phenotyped, community-ascertained, lifespan sample (ages 6-85 years old) with advanced neuroimaging and genetics. These data will be publically shared, openly, and prospectively (i.e., on a weekly basis). Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology.Item Open Access Voxelwise Mapping of Neuronal Structural Connectivity in Adolescents(2012) Smith, Alex KennethLongitudinal studies have demonstrated that the white matter in adolescents is still developing well into young adulthood. However, these studies of the corpus callosum were anatomical and DTI studies involving manual region of interest measures, which have not proven to be as in depth of an analysis as the one proposed in this study. In addition, there have been relatively few studies that have looked at the effects of childhood maltreatment on brain structure.
The methodology presented here develops a technique that will perform an extensive analysis between a well characterized group of healthy adolescents with no trauma history and a group of maltreated adolescents with PTSD symptoms. It employs a voxelwise analysis to determine significant groups of voxels using cluster enhancement and permutation correction algorithms. It then uses these significant clusters to perform an in-depth ROI analysis to determine the correlations present in these clusters with several physical and neuropsychological measures. This technique has produced evidence that validates earlier studies showing that better executive function and task ability indicate stronger structural organization within the white matter of the brain. In addition, it has provided substantial evidence that maltreated children complete myelination within the corpus callosum of the brain earlier than healthy children, indicating that chronic stress during childhood may be associated with stress-induced premature ageing.