Browsing by Subject "Databases, Nucleic Acid"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples.(Genome Res, 2014-07) Naccache, Samia N; Federman, Scot; Veeraraghavan, Narayanan; Zaharia, Matei; Lee, Deanna; Samayoa, Erik; Bouquet, Jerome; Greninger, Alexander L; Luk, Ka-Cheung; Enge, Barryett; Wadford, Debra A; Messenger, Sharon L; Genrich, Gillian L; Pellegrino, Kristen; Grard, Gilda; Leroy, Eric; Schneider, Bradley S; Fair, Joseph N; Martínez, Miguel A; Isa, Pavel; Crump, John A; DeRisi, Joseph L; Sittler, Taylor; Hackett, John; Miller, Steve; Chiu, Charles YUnbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI ("sequence-based ultrarapid pathogen identification"), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7-500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times.Item Open Access An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility.(Genome medicine, 2021-05) Wang, Liuyang; Balmat, Thomas J; Antonia, Alejandro L; Constantine, Florica J; Henao, Ricardo; Burke, Thomas W; Ingham, Andy; McClain, Micah T; Tsalik, Ephraim L; Ko, Emily R; Ginsburg, Geoffrey S; DeLong, Mark R; Shen, Xiling; Woods, Christopher W; Hauser, Elizabeth R; Ko, Dennis CBackground
While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility.Results
Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity.Conclusions
Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .Item Open Access Brave New World of human-rights DNA collection.(Trends in genetics : TIG, 2013-06) Kim, Joyce; Katsanis, Sara HNoncriminal DNA databases may serve a societal role in identifying victims of crime and human trafficking. However, how do we safeguard personal privacy of innocent victims and family members?Item Open Access Preliminary perspectives on DNA collection in anti-human trafficking efforts.(Recent advances in DNA & gene sequences, 2014-01) Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer KForensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.