Browsing by Subject "Deep Learning"
Results Per Page
Sort Options
Item Open Access A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.(Tomography (Ann Arbor, Mich.), 2023-07) Nadkarni, Rohan; Clark, Darin P; Allphin, Alex J; Badea, Cristian TPhoton-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.Item Open Access Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.(Medical physics, 2020-09) Clark, Darin P; Schwartz, Fides R; Marin, Daniele; Ramirez-Giraldo, Juan C; Badea, Cristian TPurpose
Data completion is commonly employed in dual-source, dual-energy computed tomography (CT) when physical or hardware constraints limit the field of view (FoV) covered by one of two imaging chains. Practically, dual-energy data completion is accomplished by estimating missing projection data based on the imaging chain with the full FoV and then by appropriately truncating the analytical reconstruction of the data with the smaller FoV. While this approach works well in many clinical applications, there are applications which would benefit from spectral contrast estimates over the larger FoV (spectral extrapolation)-e.g. model-based iterative reconstruction, contrast-enhanced abdominal imaging of large patients, interior tomography, and combined temporal and spectral imaging.Methods
To document the fidelity of spectral extrapolation and to prototype a deep learning algorithm to perform it, we assembled a data set of 50 dual-source, dual-energy abdominal x-ray CT scans (acquired at Duke University Medical Center with 5 Siemens Flash scanners; chain A: 50 cm FoV, 100 kV; chain B: 33 cm FoV, 140 kV + Sn; helical pitch: 0.8). Data sets were reconstructed using ReconCT (v14.1, Siemens Healthineers): 768 × 768 pixels per slice, 50 cm FoV, 0.75 mm slice thickness, "Dual-Energy - WFBP" reconstruction mode with dual-source data completion. A hybrid architecture consisting of a learned piecewise linear transfer function (PLTF) and a convolutional neural network (CNN) was trained using 40 scans (five scans reserved for validation, five for testing). The PLTF learned to map chain A spectral contrast to chain B spectral contrast voxel-wise, performing an image domain analog of dual-source data completion with approximate spectral reweighting. The CNN with its U-net structure then learned to improve the accuracy of chain B contrast estimates by copying chain A structural information, by encoding prior chain A, chain B contrast relationships, and by generalizing feature-contrast associations. Training was supervised, using data from within the 33-cm chain B FoV to optimize and assess network performance.Results
Extrapolation performance on the testing data confirmed our network's robustness and ability to generalize to unseen data from different patients, yielding maximum extrapolation errors of 26 HU following the PLTF and 7.5 HU following the CNN (averaged per target organ). Degradation of network performance when applied to a geometrically simple phantom confirmed our method's reliance on feature-contrast relationships in correctly inferring spectral contrast. Integrating our image domain spectral extrapolation network into a standard dual-source, dual-energy processing pipeline for Siemens Flash scanner data yielded spectral CT data with adequate fidelity for the generation of both 50 keV monochromatic images and material decomposition images over a 30-cm FoV for chain B when only 20 cm of chain B data were available for spectral extrapolation.Conclusions
Even with a moderate amount of training data, deep learning methods are capable of robustly inferring spectral contrast from feature-contrast relationships in spectral CT data, leading to spectral extrapolation performance well beyond what may be expected at face value. Future work reconciling spectral extrapolation results with original projection data is expected to further improve results in outlying and pathological cases.Item Open Access Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye(2024) Mandal, SayanGlaucoma is a group of chronic eye diseases characterized by optic neuropathy, which causes irreversible vision loss. It is caused by progressive degeneration of the optic nerve, leading to gradual loss of the visual field from the periphery to the center, resulting in blindness if left untreated. Since the changes are gradual and the damage progresses generally slowly, glaucoma development is insidious and often diagnosed until it reaches an advanced stage. Early detection of glaucoma progression is necessary to monitor the atrophy and formulate treatment strategies to halt progressive functional vision impairments. The availability of data centric methods have made it possible for researchers to develop computer-aided algorithms for the clinical diagnosis of glaucoma and capture accurate disease characteristics. In this research, we use deep learning models, one such forefront, to identify complex disease characteristics and progression criteria, enabling the detection of subtle changes indicative of glaucoma progression.
To this end, we investigate the structure-function relationship of glaucoma progression and explore the possibility of predicting functional impairment from structural eye deterioration. We also analyze various statistical and machine-learning methods that have aided previous attempts to estimate progression, including emerging deep-learning techniques that use structural features like optical coherence tomography (OCT) scans to predict glaucoma progression accurately. We show through our investigations that these methods are still prone to confounding risk factors, especially variability due to age, data imbalances, potential noisy labels, lack of gold standard criteria, etc. We developed novel semi-supervised time-series algorithms to overcome these multifaceted challenges using unique data-driven approaches:
Weakly-Supervised Time-Series Learning: We develop a convolutional neural network-long short-term memory (CNN-LSTM) base model to encode the spatiotemporal features from the OCT scan sequence taken over a fixed follow-up. We model the rest of the deep learning architecture on the fact that original OCT sequences exhibit age-related progression, and reshuffling the sequence order, along with the knowledge of healthy eyes from a positive-unlabeled dataset, can establish robust pseudo-progression criteria for glaucoma. This circumvents the need for gold standard labels for disease progression.
Semi-supervised Time-Series Learning: We extend the above notion to a labeled case where labels are obtained from Guided Progression Analysis (GPA), a well-known, stable, and accurate functional assessment for glaucoma progression, but might be prone to noisy labels due to nuances in data acquisition. We model the age-related structural progression as a pseudo-identifier for glaucoma progression. We use this knowledge in a contrastive learning scheme where the foundational CNN-LSTM base learns accurate spatiotemporal characteristics from potentially mislabeled data and improves predictions.
Finally, we compare and show that these methods outperform conventional and state-of-the-art techniques.
Item Open Access Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.(Medical physics, 2023-02) Zhang, Zhehao; Liu, Jiaming; Yang, Deshan; Kamilov, Ulugbek S; Hugo, Geoffrey DBackground
Motion-compensated (MoCo) reconstruction shows great promise in improving four-dimensional cone-beam computed tomography (4D-CBCT) image quality. MoCo reconstruction for a 4D-CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D-CT scans. However, such data-driven approaches are hampered by the quality of initial 4D-CBCT images used for motion modeling.Purpose
This study aims to develop a deep-learning method to generate high-quality motion models for MoCo reconstruction to improve the quality of final 4D-CBCT images.Methods
A 3D artifact-reduction convolutional neural network (CNN) was proposed to improve conventional phase-correlated Feldkamp-Davis-Kress (PCF) reconstructions by reducing undersampling-induced streaking artifacts while maintaining motion information. The CNN-generated artifact-mitigated 4D-CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in-vivo patient datasets, an extended cardiac-torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root-mean-square-error (RMSE) and normalized cross-correlation (NCC).Results
The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm-1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04.Conclusions
CNN-based artifact reduction can substantially reduce the artifacts in the initial 4D-CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D-CBCT images reconstructed using MoCo.Item Open Access Evaluating renal lesions using deep-learning based extension of dual-energy FoV in dual-source CT-A retrospective pilot study.(European journal of radiology, 2021-06) Schwartz, Fides R; Clark, Darin P; Ding, Yuqin; Ramirez-Giraldo, Juan Carlos; Badea, Cristian T; Marin, DanielePurpose
Dual-source (DS) CT, dual-energy (DE) field of view (FoV) is limited to the size of the smaller detector array. The purpose was to establish a deep learning-based approach to DE extrapolation by estimating missing image data using data from both tubes to evaluate renal lesions.Method
A DE extrapolation deep-learning (DEEDL) algorithm had been trained on DECT data of 50 patients using a DSCT with DE-FoV = 33 cm (Somatom Flash). Data from 128 patients with known renal lesions falling within DE-FoV was retrospectively collected (100/140 kVp; reference dataset 1). A smaller DE-FoV = 20 cm was simulated excluding the renal lesion of interest (dataset 2) and the DEEDL was applied to this dataset. Output from the DEEDL algorithm was evaluated using ReconCT v14.1 and Syngo.via. Mean attenuation values in lesions on mixed images (HU) were compared calculating the root-mean-squared-error (RMSE) between the datasets using MATLAB R2019a.Results
The DEEDL algorithm performed well reproducing the image data of the kidney lesions (Bosniak 1 and 2: 125, Bosniak 2F: 6, Bosniak 3: 1 and Bosniak 4/(partially) solid: 32) with RSME values of 10.59 HU, 15.7 HU for attenuation, virtual non-contrast, respectively. The measurements performed in dataset 1 and 2 showed strong correlation with linear regression (r2: attenuation = 0.89, VNC = 0.63, iodine = 0.75), lesions were classified as enhancing with an accuracy of 0.91.Conclusion
This DEEDL algorithm can be used to reconstruct a full dual-energy FoV from restricted data, enabling reliable HU value measurements in areas not covered by the smaller FoV and evaluation of renal lesions.Item Open Access Exploring a Patient-Specific Respiratory Motion Prediction Model for Tumor Localization in Abdominal and Lung SBRT Patients(2024) Garcia Alcoser, Michael EnriqueManaging respiratory motion in radiotherapy for abdominal and lung stereotactic body radiation therapy (SBRT) patients is crucial to achieving dose conformity and sparing healthy tissue. While previous studies have utilized principal component analysis (PCA) combined with deep learning to localize lung tumors in real-time, these models lack testing or validation with patient data from later treatment fractions. This study aims to achieve highly accurate 3D tumor localization for abdominal and lung cancer patients using a PCA-based convolutional neural network (CNN) motion model. Another goal is to enhance this prediction model by addressing interfractional motion in lung patients through deep learning and multiple treatment-acquired CT datasets.
The patient's 4D computed tomography (4DCT) image was registered, and resulting deformation vector fields (DVFs) were approximated using PCA. PCA coefficients, linked to diaphragm displacement, controlled breath variability in synthetic CT images. Digitally reconstructed radiographs (DRRs) from synthetic CTs served as network input. The networks were evaluated using a CT image designated for abdominal and lung cancer patient testing. A DRR of the testing CT was input into the model, and the predicted CT image was validated against the test CT to locate the tumor.
This study validated a PCA-based CNN motion model for abdominal and lung cancer patients. Intrafractional motion modeling accurately predicted abdominal tumors with a maximum error of 1.41 mm, whereas lung tumor localization resulted in a maximum error of 2.83 mm. Interfractional motion significantly influenced the accuracy of lung tumor prediction.
Item Open Access Joint Optimization of Algorithms, Hardware, and Systems for Efficient Deep Neural Networks(2024) Li, ShiyuDeep learning has enabled remarkable performance breakthroughs across various domains, including computer vision, natural language processing, and recommender systems. However, the typical deep neural network (DNN) models employed in these applications require millions of parameters and billions of operations, leading to substantial computational and memory requirements. While researchers have proposed compression methods, optimized frameworks, and specialized accelerators to improve efficiency, outstanding challenges persist, limiting the achievable gains.
A fundamental challenge lies in the inherent irregularity and sparsity of DNNs. Although these models exhibit significant sparsity, with a considerable fraction of weights and activations being zero or near-zero values, exploiting this sparsity efficiently on modern hardware is problematic due to the irregular distribution of non-zero elements. This irregularity leads to substantial overhead in indexing, gathering, and processing sparse data, resulting in poor utilization of computational and memory resources. Furthermore, recent research has identified a significant gap between the theoretical and practical improvements achieved by compression methods. Additionally, emerging DNN architectures with novel operators often nullify previous optimization efforts in software frameworks and hardware accelerators, necessitating continuous adaptation.
To address these critical challenges, this dissertation targets building a holistic approach that jointly optimizes algorithms, hardware architectures, and system designs to enable efficient deployment of DNNs in the presence of irregularity and sparsity. On the algorithm level, a novel hardware-friendly compression method based on matrix decomposition is proposed. The original convolutional kernels are decomposed into common basis kernels and a series of coefficients, with conventional pruning applied to the coefficients. This compressed DNN forms a hardware-friendly structure where the sparsity pattern is shared across input feature map pixels, alleviating sparse pattern processing costs.
On the hardware level, a novel sparse DNN accelerator is introduced to support the inference of the compressed DNN. Low-precision quantization is applied to sparse coefficients, and high-precision to basis kernels. By involving only low-precision coefficients in sparse processing, the hardware efficiently matches non-zero weights and activations using inverted butterfly networks. The shared basis kernels and sparse coefficients significantly reduce buffer size and bandwidth requirements, boosting performance and energy efficiency.
At the system level, a near-data processing framework is proposed to address the challenge of training large DNN-based recommendation models. This framework adopts computational storage devices and coherent system interconnects to partition the model into subtasks. Data-intensive embedding operations run on computational storage devices with customized memory hierarchies, while compute-intensive feature processing and aggregation operations are assigned to GPUs for maximum efficiency. This framework enables training large DNN-based recommendation models without expensive hardware investments.
Through joint optimization across algorithms, hardware architectures, and system designs, this research aims to overcome the limitations imposed by irregularity and sparsity, enabling efficient deployment of DNNs in a broad range of applications and resource-constrained environments. By addressing these critical issues, this work paves the way for fully harnessing the potential of deep learning technologies in practical settings.
Item Open Access MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.(Tomography (Ann Arbor, Mich.), 2020-03) Holbrook, MD; Blocker, SJ; Mowery, YM; Badea, A; Qi, Y; Xu, ES; Kirsch, DG; Johnson, GA; Badea, CTSmall-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.Item Open Access Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning.(BMC medical informatics and decision making, 2022-04) D'Anniballe, Vincent M; Tushar, Fakrul Islam; Faryna, Khrystyna; Han, Songyue; Mazurowski, Maciej A; Rubin, Geoffrey D; Lo, Joseph YBackground
There is progress to be made in building artificially intelligent systems to detect abnormalities that are not only accurate but can handle the true breadth of findings that radiologists encounter in body (chest, abdomen, and pelvis) computed tomography (CT). Currently, the major bottleneck for developing multi-disease classifiers is a lack of manually annotated data. The purpose of this work was to develop high throughput multi-label annotators for body CT reports that can be applied across a variety of abnormalities, organs, and disease states thereby mitigating the need for human annotation.Methods
We used a dictionary approach to develop rule-based algorithms (RBA) for extraction of disease labels from radiology text reports. We targeted three organ systems (lungs/pleura, liver/gallbladder, kidneys/ureters) with four diseases per system based on their prevalence in our dataset. To expand the algorithms beyond pre-defined keywords, attention-guided recurrent neural networks (RNN) were trained using the RBA-extracted labels to classify reports as being positive for one or more diseases or normal for each organ system. Alternative effects on disease classification performance were evaluated using random initialization or pre-trained embedding as well as different sizes of training datasets. The RBA was tested on a subset of 2158 manually labeled reports and performance was reported as accuracy and F-score. The RNN was tested against a test set of 48,758 reports labeled by RBA and performance was reported as area under the receiver operating characteristic curve (AUC), with 95% CIs calculated using the DeLong method.Results
Manual validation of the RBA confirmed 91-99% accuracy across the 15 different labels. Our models extracted disease labels from 261,229 radiology reports of 112,501 unique subjects. Pre-trained models outperformed random initialization across all diseases. As the training dataset size was reduced, performance was robust except for a few diseases with a relatively small number of cases. Pre-trained classification AUCs reached > 0.95 for all four disease outcomes and normality across all three organ systems.Conclusions
Our label-extracting pipeline was able to encompass a variety of cases and diseases in body CT reports by generalizing beyond strict rules with exceptional accuracy. The method described can be easily adapted to enable automated labeling of hospital-scale medical data sets for training image-based disease classifiers.Item Open Access Prediction of Bitcoin prices using Twitter Data and Natural Language Processing(2021-12-16) Wong, Eugene Lu XianThe influence of social media platforms like Twitter had long been perceived as a bellwether of Bitcoin Prices. This paper aims to investigate if the tweets can be modeled using two different approaches, namely, the Naïve Bayes and LSTM models, to compute the sentiment scores in order to predict the Bitcoin price signal. Through the experiments conducted, the LSTM model indicates some degree of predictive advantage compared to the Naïve Bayes model.Item Open Access Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images.(Scientific reports, 2020-10) Prince, Eric W; Whelan, Ros; Mirsky, David M; Stence, Nicholas; Staulcup, Susan; Klimo, Paul; Anderson, Richard CE; Niazi, Toba N; Grant, Gerald; Souweidane, Mark; Johnston, James M; Jackson, Eric M; Limbrick, David D; Smith, Amy; Drapeau, Annie; Chern, Joshua J; Kilburn, Lindsay; Ginn, Kevin; Naftel, Robert; Dudley, Roy; Tyler-Kabara, Elizabeth; Jallo, George; Handler, Michael H; Jones, Kenneth; Donson, Andrew M; Foreman, Nicholas K; Hankinson, Todd CDeep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases.