Browsing by Subject "Diet"
Results Per Page
Sort Options
Item Open Access A Novel Method for Assessing Enamel Thickness Distribution in the Anterior Dentition as a Signal for Gouging and Other Extractive Foraging Behaviors in Gummivorous Mammals.(Folia primatologica; international journal of primatology, 2020-01) Selig, Keegan R; López-Torres, Sergi; Hartstone-Rose, Adam; Nash, Leanne T; Burrows, Anne M; Silcox, Mary TGummivory poses unique challenges to the dentition as gum acquisition may often require that the anterior teeth be adapted to retain a sharp edge and to resist loading because they sometimes must penetrate a highly obdurate substrate during gum extraction by means of gouging or scraping. It has been observed previously that the enamel on the labial surface of the teeth used for extraction is thicker relative to that on the lingual surface in taxa that extract gums, while enamel is more evenly distributed in the anterior teeth of taxa that do not regularly engage in extractive behaviors. This study presents a quantitative methodology for measuring the distribution of labial versus lingual enamel thickness among primate and marsupial taxa in the context of gummivory. Computed microtomography scans of 15 specimens representing 14 taxa were analyzed. Ten measurements were taken at 20% intervals starting from the base of the crown of the extractive tooth to the tip of the cutting edge across the lingual and labial enamel. A method for including worn or broken teeth is also presented. Mann-Whitney U tests, canonical variates analysis, and between-group principal components analysis were used to examine variation in enamel thickness across taxa. Our results suggest that the differential distribution of enamel thickness in the anterior dentition can serve as a signal for gouging behavior; this methodology distinguishes between gougers, scrapers, and nonextractive gummivores. Gouging taxa are characterized by significantly thicker labial enamel relative to the lingual enamel, particularly towards the crown tip. Examination of enamel thickness patterning in these taxa permits a better understanding of the adaptations for the extraction of gums in extant taxa and offers the potential to test hypotheses concerning the dietary adaptations of fossil taxa.Item Open Access A population model of folate-mediated one-carbon metabolism.(Nutrients, 2013-07-05) Duncan, Tanya M; Reed, Michael C; Nijhout, H FrederikBACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.Item Open Access Acute and Intergenerational Nutrient Responses in Caenorhabditis elegans(2017) Hibshman, Jonathan DavidNearly all animals live in environments with fluctuations in nutrient availability. The ability to sense and respond to these changes is essential for survival. Nutrition impacts physiology immediately, but can also have long-lasting effects across generations. The nematode Caenorhabditis elegans is particularly well-adapted to thrive in conditions of variable food availability. Here we find that starvation responses in C. elegans are largely independent of the larval stage at which worms experience starvation. Starvation in worms results in shrinkage, delayed growth upon recovery, and ultimately death. In order to adapt to starvation, metabolism is dramatically altered. At a gross level, this can be seen in a reduction of mitochondrial genomes and a more fragmented network of mitochondria.
Insulin-like signaling is a key cell signaling pathway controlling nutrient responses. We interrogate the role of insulin-like signaling in regulation of the acute starvation response. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant, but also serves as a glycolytic input. Further, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.
In addition to acute changes in response to the nutrient environment, effects can persist intergenerationally. Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR) delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more off- spring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects.
Item Open Access Assessments of frailty in bladder cancer.(Urologic oncology, 2020-05-22) Grimberg, Dominic C; Shah, Ankeet; Molinger, Jeroen; Whittle, John; Gupta, Rajan T; Wischmeyer, Paul E; McDonald, Shelley R; Inman, Brant ABACKGROUND AND AIMS:The incidence of frailty is increasing as the population ages, which has important clinical implications given the associations between frailty and poor outcomes in the bladder cancer population. Due to a multi-organ system decline and decreased physiologic reserve, frail patients are vulnerable to stressors of disease and have poorer mortality and morbidity rates than their nonfrail peers. The association between frailty and poor outcomes has been documented across multiple populations, including radical cystectomy, creating a need for frailty assessments to be used preoperatively for risk stratification. We aim to provide a review of the common frailty assessments and their relevance to radical cystectomy patients. FINDINGS:A variety of assessments for frailty exist, from short screening items to comprehensive geriatric assessments. The syndrome spans multiple organ systems, as do the potential diagnostic instruments. Some instruments are less practical for use in clinical practice by urologists, such as the Canadian Study of Health and Aging Frailty Index and Comprehensive Geriatric Assessment. The tool most studied in radical cystectomy is the modified Frailty Index, associated with high grade complications and 30-days mortality. Frailty often coexists with malnutrition and sarcopenia, stressing the importance of screening for and addressing these syndromes to improve patient's perioperative outcomes. CONCLUSIONS:There is no universally agreed upon frailty assessment, but the most studied in radical cystectomy is the modified Frailty Index, providing valuable data with which to counsel patients preoperatively. Alterations in immune phenotypes provide potential future diagnostic biomarkers for frailty.Item Open Access Captivity humanizes the primate microbiome.(Proc Natl Acad Sci U S A, 2018-03-01) Clayton, Jonathan B; Vangay, Pajau; Huang, Hu; Ward, Tonya; Hillmann, Benjamin M; Al-Ghalith, Gabriel A; Travis, Dominic A; Long, Ha Thang; Tuan, Bui Van; Minh, Vo Van; Cabana, Francis; Nadler, Tilo; Toddes, Barbara; Murphy, Tami; Glander, Kenneth E; Johnson, Timothy J; Knights, DanThe primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome.Item Open Access Comparative genomics reveals insights into avian genome evolution and adaptation.(Science, 2014-12-12) Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Avian Genome Consortium; Jarvis, Erich D; Gilbert, M Thomas P; Wang, JunBirds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.Item Open Access Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma.(BMC Cancer, 2010-05-19) DeLorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry, Charles P; Rice, Terri; Il'yasova, Dora; Wrensch, MargaretBACKGROUND: Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. METHODS: Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV) and conducted for all (including proxy) subjects and for a subset of self-reported subjects. RESULTS: Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n=748) to self-reported cases only (n=450). For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg) intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg), for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases; high intake of vitamin C and genistein and the highest level of the antioxidant index were associated with poorer survival for all cases. CONCLUSIONS: The associations observed in our study suggest that the influence of some antioxidants on survival following a diagnosis of malignant glioma are inconsistent and vary by histology group. Further research in a large sample of glioma patients is needed to confirm/refute our results.Item Open Access Dental topographic change with macrowear and dietary inference in Homunculus patagonicus.(Journal of human evolution, 2020-07) Li, Peishu; Morse, Paul E; Kay, Richard FHomunculus patagonicus is a stem platyrrhine from the late Early Miocene, high-latitude Santa Cruz Formation, Argentina. Its distribution lies farther south than any extant platyrrhine species. Prior studies on the dietary specialization of Homunculus suggest either a mixed diet of fruit and leaves or a more predominantly fruit-eating diet. To gain further insight into the diet of Homunculus, we examined how the occlusal surfaces of the first and second lower molars of Homunculus change with wear by using three homology-free dental topographic measures: Dirichlet normal energy (DNE), orientation patch count rotated (OPCR), and relief index (RFI). We compared these data with wear series of three extant platyrrhine taxa: the folivorous Alouatta, and the frugivorous Ateles and Callicebus (titi monkeys now in the genus Plecturocebus). Previous studies found Alouatta and Ateles exhibit distinctive patterns of change in occlusal morphology with macrowear, possibly related to the more folivorous diet of the former. Based on previous suggestions that Homunculus was at least partially folivorous, we predicted that changes in dental topographic metrics with wear would follow a pattern more similar to that seen in Alouatta than in Ateles or Callicebus. However, wear-induced changes in Homunculus crown sharpness (DNE) and complexity (OPCR) are more similar to the pattern observed in the frugivorous Ateles and Callicebus. Based on similar wear modalities of the lower molars between Homunculus and Callicebus, we infer that Homunculus had a primarily frugivorous diet. Leaves may have provided an alternative dietary resource to accommodate fluctuation in seasonal fruiting abundance in the high-latitude extratropical environment of late Early Miocene Patagonia.Item Open Access Dental topography of the Oligocene anthropoids Aegyptopithecus zeuxis and Apidium phiomense: Paleodietary insights from analysis of wear series.(Journal of human evolution, 2023-05) Morse, Paul E; Pampush, James D; Kay, Richard FFossil primate dietary inference is enhanced when ascertained through multiple, distinct proxies. Dental topography can be used to assess changes in occlusal morphology with macrowear, providing insight on tooth use and function across the lifespans of individuals. We measured convex Dirichlet normal energy-a dental topography metric reflecting occlusal sharpness of features such as cusps and crests-in macrowear series of the second mandibular molars of two African anthropoid taxa from ∼30 Ma (Aegyptopithecus zeuxis and Apidium phiomense). Wear was quantified via three proxies: occlusal dentine exposure, inverse relief index, and inverse occlusal relief. The same measurements were calculated on macrowear series of four extant platyrrhine taxa (Alouatta, Ateles, Plecturocebus, and Sapajus apella) to provide an analogical framework for dietary inference in the fossil taxa. We predicted that Ae. zeuxis and Ap. phiomense would show similar patterns in topographic change with wear to one another and to extant platyrrhine frugivores like Ateles and Plecturocebus. The fossil taxa have similar distributions of convex Dirichlet normal energy to one another, and high amounts of concave Dirichlet normal energy 'noise' in unworn molars-a pattern shared with extant hominids that may distort dietary interpretations. Inverse relief index was the most useful wear proxy for comparison among the taxa in this study which possess disparate enamel thicknesses. Contrary to expectations, Ae. zeuxis and Ap. phiomense both resemble S. apella in exhibiting an initial decline in convex Dirichlet normal energy followed by an increase at the latest stages of wear as measured by inverse relief index, lending support to previous suggestions that hard-object feeding played a role in their dietary ecology. Based on these results and previous analyses of molar shearing quotients, microwear, and enamel microstructure, we suggest that Ae. zeuxis had a pitheciine-like strategy of seed predation, whereas Ap. phiomense potentially consumed berry-like compound fruits with hard seeds.Item Open Access Diet and Exercise Are not Associated with Skeletal Muscle Mass and Sarcopenia in Patients with Bladder Cancer.(European urology oncology, 2021-04) Wang, Yingqi; Chang, Andrew; Tan, Wei Phin; Fantony, Joseph J; Gopalakrishna, Ajay; Barton, Gregory J; Wischmeyer, Paul E; Gupta, Rajan T; Inman, Brant ABackground
There is limited understanding about why sarcopenia is happening in bladder cancer, and which modifiable and nonmodifiable patient-level factors affect its occurrence.Objective
The objective is to determine the extent to which nonmodifiable risk factors, modifiable lifestyle risk factors, or cancer-related factors are determining body composition changes and sarcopenia in bladder cancer survivors.Design, setting, and participants
Patients above 18 yr of age with a histologically confirmed diagnosis of bladder cancer and a history of receiving care at Duke University Medical Center between January 1, 1996 and June 30, 2017 were included in this study.Outcome measurements and statistical analysis
Bladder cancer survivors from our institution were assessed for their dietary intake patterns utilizing the Diet History Questionnaire II (DHQ-II) and physical activity utilizing the International Physical Activity Questionnaire long form (IPAQ-L) tools. Healthy Eating Index 2010 (HEI2010) scores were calculated from DHQ-II results. Body composition was evaluated using Slice-O-Matic computed tomography scan image analysis at L3 level and the skeletal muscle index (SMI) calculated by three independent raters.Results and limitations
A total of 285 patients were evaluated in the study, and the intraclass correlation for smooth muscle area was 0.97 (95% confidence interval: 0.94-0.98) between raters. The proportions of patients who met the definition of sarcopenia were 72% for men and 55% of women. Univariate linear regression analysis demonstrated that older age, male gender, and black race were highly significant predictors of SMI, whereas tumor stage and grade, chemotherapy, and surgical procedures were not predictors of SMI. Multivariate linear regression analysis demonstrated that modifiable lifestyle factors, including total physical activity (p=0.830), strenuousness (high, moderate, and low) of physical activity (p=0.874), individual nutritional components (daily calories, p=0.739; fat, p=0.259; carbohydrates, p=0.983; and protein, p=0.341), and HEI2010 diet quality (p=0.822) were not associated with SMI.Conclusions
Lifestyle factors including diet quality and physical activity are not associated with SMI and therefore appear to have limited impact on sarcopenia. Sarcopenia may largely be affected by nonmodifiable risk factors.Patient summary
In this report, we aim to determine whether lifestyle factors such as diet and physical activity were the primary drivers of body composition changes and sarcopenia in bladder cancer survivors. We found that lifestyle factors including dietary habits, individual nutritional components, and physical activity do not demonstrate an association with skeletal muscle mass, and therefore may have limited impact on sarcopenia.Item Open Access Dietary Choline, Inflammation, and Neuroprotection Across the Lifespan(2020) Maurer, SaraThe cholinergic system is intricately linked with hippocampal memory. As well, choline is anti-inflammatory in the brain and periphery (Terrando et al., 2011; Rivera et al., 1998). However, few have analyzed the anti-inflammatory properties of choline as an alternate means by which cholinergic manipulations affect hippocampal memory throughout the lifespan. The first aim of this dissertation work sought to determine if dietary choline supplementation protects against the deleterious effects of air pollution in the developing brain. Pregnant mice were given a high-choline diet (approximately 4.5x the choline chloride in the control diet) or a synthetic control diet. As well, dams were exposed to a series of diesel particulate (DEP) or saline vehicle sessions throughout pregnancy. Mice were sacrificed and tissues were collected on embryonic day 18. The activation state of microglia, identified by quantifying morphology using Iba1+ immunohistochemical staining, was examined in the dentate gyrus of the hippocampus (DG), the paraventricular nucleus (PVN) of the hypothalamus, the basolateral amygdala (AMY), and the parietal cortex (PCX). As expected, we found that DEP led to increased microglial activation in the fetal DG in males. Choline supplementation partially prevented this increase in activation. Interestingly, these effects were region-specific: the opposite pattern is seen in the PVN, and no significant diesel effect was seen in the AMY and PCX. These findings suggest that prenatal choline supplementation throughout pregnancy may protect the fetal hippocampus against the neuroinflammation associated with air pollution. To analyze whether the acute effects of dietary choline seen prenatally also occur in adulthood, adult dietary choline supplementation alongside the tibial fracture model of post-operative cognitive dysfunction (POCD) was used. POCD occurs when increased neuroinflammation due to peripheral surgery leads to impairments in cognition. Differences were found in almost hippocampal-dependent behavior, astrocytic activation, and cell proliferation. Differences were time point-specific. In the hippocampus, astrocytic activation, cell proliferation, and hilar granule cells all increased 1 day after surgery, and these increases were blunted by dietary choline. An increase in hippocampal young neurons was found 2 weeks after surgery. However, both were blunted by choline supplementation. At both time points assessed, tibial fracture impaired novel object recognition performance, and dietary choline rescued these impairments. As well, dietary choline supplementation did not mitigate the increase in anxiety-related behavior – specifically implicating hippocampal actions of the nutrient. Because the hippocampal-dependent memory impairment and rescue is not time point-specific, but the neural effects of tibial fracture are each specific to a certain timepoint, the mechanisms of behavior are likely different at each time point. Building upon aim 2, aim 3 explores if perinatal choline supplementation can act via “programming” of the neuroimmune system in development to prevent POCD in adulthood. Perinatal choline supplementation prevented POCD and neuroinflammation due to peripheral surgery, but did not protect against increases in young neurons or hilar neurons. Perinatal choline nutrition, in addition to its already-known neuroprotection, is additionally protective against POCD and its associated neuroinflammation in adulthood. Taken together, this body of work concludes that dietary choline supplementation at various administration dates is protective in neuroinflammatory models in behavior and brain.
Item Open Access Dietary inference from upper and lower molar morphology in platyrrhine primates.(PLoS One, 2015) Allen, Kari L; Cooke, Siobhán B; Gonzales, Lauren A; Kay, Richard FThe correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.Item Open Access Dietary Manipulation of Metabolic Function in the Human Gut Microbiome(2021) Holmes, Robert Zachary CThe human gut microbiome is increasingly recognized as having a causal or contributing role in a wide variety of diseases. While mechanisms by which the microbiome contributes to or triggers disease processes are myriad, short-chain fatty acid (SCFA) production has been found to be a powerful regulator of inflammation and gastrointestinal (GI) function, and may be central to the link between host and microbiota. Supplementing the diet with microbially accessible carbohydrates, termed prebiotics, is one mechanism by which SCFA production can be augmented or altered. While prebiotic therapies to increase SCFA in the gut have shown some promise in treating or preventing disease, treatment potential is limited by substantial inter-individual variation in responses to prebiotics. Determining the cause for this variation is necessary to develop treatment approaches that maximize patient responsiveness. Ultimately, tools to predict an individual’s response to a prebiotic and to guide treatment options must be developed. Here, I seek to understand the drivers of inter-individual and intra-individual variation in prebiotic response and to develop strategies to predict this response. In Chapter One, I introduce the human gut microbiome and its roles in maintaining host health and contributing to disease processes. I also present the existing evidence for substantial variation in SCFA productive response to prebiotic supplementation and highlight the need for a more nuanced understanding of the drivers of such variation. In Chapter Two, I explore the contributions of host factors and prebiotic choice to variation in SCFA production. This chapter introduces a novel in vitro fiber fermentation system, which is used throughout this thesis, and shows our methods validation of such. We find not only that host identity and prebiotic choice both impact SCFA production, but that the interaction of these terms is a significant contributor, introducing the possibility of the need for personalization. We then identify multiple host factors, including microbiota community composition and baseline SCFA metabolic state of stool, that explain some portion of inter-individual variation in prebiotic response. In Chapter Three, this relationship is further explored during the first in vivo triple-crossover prebiotic supplementation study. We supply 28 healthy adults with three different prebiotic supplements in a balanced and uniform crossover design, measuring SCFA as the primary outcome. This study makes the major contribution of quantifying the relative contribution of individual identity and prebiotic choice to butyrogenic response, and identifying individual as the vastly stronger predictor. We also identify habitual diet and baseline fecal SCFA concentrations as potential predictors of prebiotic efficacy. As a secondary analysis, we apply co-inertia analysis to draw associations between dietary choices and fecal SCFA metabolism. Together, these works highlight the need for personalization of prebiotic therapy and introduce potential biomarkers of responsiveness. In Chapter Four, we apply the concept of prebiotic therapy to graft-versus-host disease (GVHD) and show efficacy in a murine model. Importantly, we show that efficacy of prebiotics in this model of GVHD is dependent on the starting state of the microbiota, as observed through community composition analysis and functional in vitro fiber fermentation.
Item Open Access Dietary quality and encephalization in platyrrhine primates.(Proc Biol Sci, 2012-02-22) Allen, Kari L; Kay, Richard FThe high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.Item Open Access Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism.(PloS one, 2017-01) Mulligan, Jennifer K; Mulligan, Jennifer K; Pasquini, Whitney N; Carroll, William W; Williamson, Tucker; Reaves, Nicholas; Patel, Kunal J; Mappus, Elliott; Schlosser, Rodney J; Atkinson, CarlRationale
Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS).Methods
Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined.Results
Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A.Conclusions
VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.Item Open Access Dust accumulation in the canopy: a potential cause of dental microwear in primates.(Am J Phys Anthropol, 1995-06) Ungar, PS; Teaford, MF; Glander, KE; Pastor, RFDental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth.Item Open Access Factors associated with non-adherence to three hypertension self-management behaviors: preliminary data for a new instrument.(Journal of general internal medicine, 2013-01) Crowley, Matthew J; Grubber, Janet M; Olsen, Maren K; Bosworth, Hayden BBackground
Clinicians have difficulty in identifying patients that are unlikely to adhere to hypertension self-management. Identifying non-adherence is essential to addressing suboptimal blood pressure control and high costs.Objectives
1) To identify risk factors associated with non-adherence to three key self-management behaviors in patients with hypertension: proper medication use, diet, and exercise; 2) To evaluate the extent to which an instrument designed to identify the number of risk factors present for non-adherence to each of the three hypertension self-management behaviors would be associated with self-management non-adherence and blood pressure.Design
Cross-sectional analysis of randomized trial data.Patients
Six hundred and thirty-six primary care patients with hypertension.Measurements
1) Demographic, socioeconomic, psychosocial, and health belief-related factors; 2) measures of self-reported adherence to recommended medication use, diet recommendations, and exercise recommendations, all collected at baseline assessment; 3) systolic blood pressure (SBP) and diastolic blood pressure (DBP).Results
We identified patient factors associated with measures of non-adherence to medications, diet, and exercise in hypertension. We then combined risk factors associated with ≥1 adherence measure into an instrument that generated three composite variables (medication, diet, and exercise composites), reflecting the number of risk factors present for non-adherence to the corresponding self-management behavior. These composite variables identified subgroups with higher likelihood of medication non-adherence, difficulty following diet recommendations, and difficulty following exercise recommendations. Composite variable levels representing the highest number of self-management non-adherence risk factors were associated with higher SBP and DBP.Conclusions
We identified factors associated with measures of non-adherence to recommended medication use, diet, and exercise in hypertension. We then developed an instrument that was associated with non-adherence to these self-management behaviors, as well as with blood pressure. With further study, this instrument has potential to improve identification of non-adherent patients with hypertension.Item Open Access FGF23/FGFR4-mediated left ventricular hypertrophy is reversible.(Scientific reports, 2017-05-16) Grabner, Alexander; Schramm, Karla; Silswal, Neerupma; Hendrix, Matt; Yanucil, Christopher; Czaya, Brian; Singh, Saurav; Wolf, Myles; Hermann, Sven; Stypmann, Jörg; Di Marco, Giovana Seno; Brand, Marcus; Wacker, Michael J; Faul, ChristianFibroblast growth factor (FGF) 23 is a phosphaturic hormone that directly targets cardiac myocytes via FGF receptor (FGFR) 4 thereby inducing hypertrophic myocyte growth and the development of left ventricular hypertrophy (LVH) in rodents. Serum FGF23 levels are highly elevated in patients with chronic kidney disease (CKD), and it is likely that FGF23 directly contributes to the high rates of LVH and cardiac death in CKD. It is currently unknown if the cardiac effects of FGF23 are solely pathological, or if they potentially can be reversed. Here, we report that FGF23-induced cardiac hypertrophy is reversible in vitro and in vivo upon removal of the hypertrophic stimulus. Specific blockade of FGFR4 attenuates established LVH in the 5/6 nephrectomy rat model of CKD. Since CKD mimics a form of accelerated cardiovascular aging, we also studied age-related cardiac remodeling. We show that aging mice lacking FGFR4 are protected from LVH. Finally, FGF23 increases cardiac contractility via FGFR4, while known effects of FGF23 on aortic relaxation do not require FGFR4. Taken together, our data highlight a role of FGF23/FGFR4 signaling in the regulation of cardiac remodeling and function, and indicate that pharmacological interference with cardiac FGF23/FGFR4 signaling might protect from CKD- and age-related LVH.Item Open Access Food, class, and health: the role of the perceived body in the social reproduction of health.(Health communication, 2013-05) Chapman, Shawna L Carroll; Wu, Li-TzyThe association between social class and cardiovascular health is complex, involving a constant interplay of factors as individuals integrate external information from the media, health care providers, and people they know with personal experience to produce health behaviors. This ethnographic study took place from February 2008 to February 2009 to assess how cardiovascular health information circulating in Kansas City influenced a sample of 55 women in the area. Participants were primarily Caucasian (n = 41) but diverse in terms of age, income, and education. Themes identified in transcripts showed women shared the same idea of an ideal body, young and thin, and associated this perception with ideas about good health, intelligence, and morality. Transcript themes corresponded to those found at health events and in the media that emphasized individual control over determinants of disease. Women's physical appearance and health behaviors corresponded to class indicators. Four categories were identified to represent women's shared beliefs and practices in relation to class, cardiovascular disease, and obesity. Findings were placed within an existing body of social theory to better understand how cardiovascular health information and women's associated beliefs relate to health inequality.Item Open Access Fueling for Performance.(Sports health, 2018-01) Bytomski, Jeffrey RCONTEXT:Proper nutrition is crucial for an athlete to optimize his or her performance for training and competition. Athletes should be able to meet their dietary needs through eating a wide variety of whole food sources. EVIDENCE ACQUISITION:PubMed was searched for relevant articles published from 1980 to 2016. STUDY DESIGN:Clinical review. LEVEL OF EVIDENCE:Level 4. RESULTS:An athlete should have both daily and activity-specific goals for obtaining the fuel necessary for successful training. Depending on the timing of their season, athletes may be either trying to gain lean muscle mass, lose fat, or maintain their current weight. CONCLUSION:An athlete will have different macronutrient goals depending on sport, timing of exercise, and season status. There are no specific athletic micronutrient guidelines, but testing should be considered for athletes with deficiency or injury. Also, some athletes who eliminate certain whole food groups (eg, vegetarian) may need to supplement their diet to avoid deficiencies.