Browsing by Subject "Dimerization"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Binding of MetJ repressor to specific and nonspecific DNA and effect of S-adenosylmethionine on these interactions.(Biochemistry, 2010-04-20) Augustus, Anne M; Sage, Harvey; Spicer, Leonard DWe have used analytical ultracentrifugation to characterize the binding of the methionine repressor protein, MetJ, to synthetic oligonucleotides containing zero to five specific recognition sites, called metboxes. For all lengths of DNA studied, MetJ binds more tightly to repeats of the consensus sequence than to naturally occurring metboxes, which exhibit a variable number of deviations from the consensus. Strong cooperative binding occurs only in the presence of two or more tandem metboxes, which facilitate protein-protein contacts between adjacent MetJ dimers, but weak affinity is detected even with DNA containing zero or one metbox. The affinity of MetJ for all of the DNA sequences studied is enhanced by the addition of SAM, the known cofactor for MetJ in the cell. This effect extends to oligos containing zero or one metbox, both of which bind two MetJ dimers. In the presence of a large excess concentration of metbox DNA, the effect of cooperativity is to favor populations of DNA oligos bound by two or more MetJ dimers rather than a stochastic redistribution of the repressor onto all available metboxes. These results illustrate the dynamic range of binding affinity and repressor assembly that MetJ can exhibit with DNA and the effect of the corepressor SAM on binding to both specific and nonspecific DNA.Item Open Access Competition between monomeric and dimeric crystals in schematic models for globular proteins.(J Phys Chem B, 2014-07-17) Fusco, Diana; Charbonneau, PatrickAdvances in experimental techniques and in theoretical models have improved our understanding of protein crystallization. However, they have also left open questions regarding the protein phase behavior and self-assembly kinetics, such as why (nearly) identical crystallization conditions can sometimes result in the formation of different crystal forms. Here, we develop a patchy particle model with competing sets of patches that provides a microscopic explanation of this phenomenon. We identify different regimes in which one or two crystal forms can coexist with a low-density fluid. Using analytical approximations, we extend our findings to different crystal phases, providing a general framework for treating protein crystallization when multiple crystal forms compete. Our results also suggest different experimental routes for targeting a specific crystal form, and for reducing the dynamical competition between the two forms, thus facilitating protein crystal assembly.Item Open Access Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.(Nano letters, 2014-01) Pilo-Pais, M; Watson, A; Demers, S; LaBean, TH; Finkelstein, GDNA origami is a novel self-assembly technique allowing one to form various two-dimensional shapes and position matter with nanometer accuracy. We use DNA origami templates to engineer surface-enhanced Raman scattering substrates. Specifically, gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies exhibit "hot spots" of enhanced electromagnetic field between the nanoparticles. We observed a significant Raman signal enhancement from molecules covalently attached to the assemblies, as compared to control nanoparticle samples that lack interparticle hot spots. Furthermore, Raman molecules are used to map out the hot spots' distribution, as they are burned when experiencing a threshold electric field. Our method opens up the prospects of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.Item Open Access The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.(Cancer discovery, 2017-04) Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, WenyiBRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APCFZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR.See related commentary by Zhang and Bollag, p. 356This article is highlighted in the In This Issue feature, p. 339.