Browsing by Subject "Drug Approval"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access 5-α reductase inhibitors and prostate cancer prevention: where do we turn now?(BMC Med, 2011-09-15) Hamilton, Robert J; Freedland, Stephen JWith the lifetime risk of being diagnosed with prostate cancer so great, an effective chemopreventive agent could have a profound impact on the lives of men. Despite decades of searching for such an agent, physicians still do not have an approved drug to offer their patients. In this article, we outline current strategies for preventing prostate cancer in general, with a focus on the 5-α-reductase inhibitors (5-ARIs) finasteride and dutasteride. We discuss the two landmark randomized, controlled trials of finasteride and dutasteride, highlighting the controversies stemming from the results, and address the issue of 5-ARI use, including reasons why providers may be hesitant to use these agents for chemoprevention. We further discuss the recent US Food and Drug Administration ruling against the proposed new indication for dutasteride and the change to the labeling of finasteride, both of which were intended to permit physicians to use the drugs for chemoprevention. Finally, we discuss future directions for 5-ARI research.Item Open Access Developing drugs for developing countries.(Health Aff (Millwood), 2006-03) Ridley, David; Moe, JeffreyInfectious and parasitic diseases create enormous health burdens, but because most of the people suffering from these diseases are poor, little is invested in developing treatments. We propose that developers of treatments for neglected diseases receive a "priority review voucher." The voucher could save an average of one year of U.S. Food and Drug Administration (FDA) review and be sold by the developer to the manufacturer of a blockbuster drug. In a well-functioning market, the voucher would speed access to highly valued treatments. Thus, the voucher could benefit consumers in both developing and developed countries at relatively low cost to the taxpayer.Item Open Access Developing Treatment Guidelines During a Pandemic Health Crisis: Lessons Learned From COVID-19.(Annals of internal medicine, 2021-08) Kuriakose, Safia; Singh, Kanal; Pau, Alice K; Daar, Eric; Gandhi, Rajesh; Tebas, Pablo; Evans, Laura; Gulick, Roy M; Lane, H Clifford; Masur, Henry; NIH COVID-19 Treatment Guidelines Panel; Aberg, Judith A; Adimora, Adaora A; Baker, Jason; Kreuziger, Lisa Baumann; Bedimo, Roger; Belperio, Pamela S; Cantrill, Stephen V; Coopersmith, Craig M; Davis, Susan L; Dzierba, Amy L; Gallagher, John J; Glidden, David V; Grund, Birgit; Hardy, Erica J; Hinkson, Carl; Hughes, Brenna L; Johnson, Steven; Keller, Marla J; Kim, Arthur Y; Lennox, Jeffrey L; Levy, Mitchell M; Li, Jonathan Z; Martin, Greg S; Naggie, Susanna; Pavia, Andrew T; Seam, Nitin; Simpson, Steven Q; Swindells, Susan; Tien, Phyllis; Waghmare, Alpana A; Wilson, Kevin C; Yazdany, Jinoos; Zachariah, Philip; Campbell, Danielle M; Harrison, Carly; Burgess, Timothy; Francis, Joseph; Sheikh, Virginia; Uyeki, Timothy M; Walker, Robert; Brooks, John T; Ortiz, Laura Bosque; Davey, Richard T; Doepel, Laurie K; Eisinger, Robert W; Han, Alison; Higgs, Elizabeth S; Nason, Martha C; Crew, Page; Lerner, Andrea M; Lund, Claire; Worthington, ChristopherThe development of the National Institutes of Health (NIH) COVID-19 Treatment Guidelines began in March 2020 in response to a request from the White House Coronavirus Task Force. Within 4 days of the request, the NIH COVID-19 Treatment Guidelines Panel was established and the first meeting took place (virtually-as did subsequent meetings). The Panel comprises 57 individuals representing 6 governmental agencies, 11 professional societies, and 33 medical centers, plus 2 community members, who have worked together to create and frequently update the guidelines on the basis of evidence from the most recent clinical studies available. The initial version of the guidelines was completed within 2 weeks and posted online on 21 April 2020. Initially, sparse evidence was available to guide COVID-19 treatment recommendations. However, treatment data rapidly accrued based on results from clinical studies that used various study designs and evaluated different therapeutic agents and approaches. Data have continued to evolve at a rapid pace, leading to 24 revisions and updates of the guidelines in the first year. This process has provided important lessons for responding to an unprecedented public health emergency: Providers and stakeholders are eager to access credible, current treatment guidelines; governmental agencies, professional societies, and health care leaders can work together effectively and expeditiously; panelists from various disciplines, including biostatistics, are important for quickly developing well-informed recommendations; well-powered randomized clinical trials continue to provide the most compelling evidence to guide treatment recommendations; treatment recommendations need to be developed in a confidential setting free from external pressures; development of a user-friendly, web-based format for communicating with health care providers requires substantial administrative support; and frequent updates are necessary as clinical evidence rapidly emerges.Item Open Access Economic return of clinical trials performed under the pediatric exclusivity program.(JAMA, 2007-02-07) Li, Jennifer; Eisenstein, Eric; Reid, Elizabeth; Mangum, Barry; Schulman, Kevin; Goldsmith, John; Murphy, M Dianne; Califf, Robert; Benjamin, Daniel; JrCONTEXT: In 1997, Congress authorized the US Food and Drug Administration (FDA) to grant 6-month extensions of marketing rights through the Pediatric Exclusivity Program if industry sponsors complete FDA-requested pediatric trials. The program has been praised for creating incentives for studies in children and has been criticized as a "windfall" to the innovator drug industry. This critique has been a substantial part of congressional debate on the program, which is due to expire in 2007. OBJECTIVE: To quantify the economic return to industry for completing pediatric exclusivity trials. DESIGN AND SETTING: A cohort study of programs conducted for pediatric exclusivity. Nine drugs that were granted pediatric exclusivity were selected. From the final study reports submitted to the FDA (2002-2004), key elements of the clinical trial design and study operations were obtained, and the cost of performing each study was estimated and converted into estimates of after-tax cash outflows. Three-year market sales were obtained and converted into estimates of after-tax cash inflows based on 6 months of additional market protection. Net economic return (cash inflows minus outflows) and net return-to-costs ratio (net economic return divided by cash outflows) for each product were then calculated. MAIN OUTCOME MEASURES: Net economic return and net return-to-cost ratio. RESULTS: The indications studied reflect a broad representation of the program: asthma, tumors, attention-deficit/hyperactivity disorder, hypertension, depression/generalized anxiety disorder, diabetes mellitus, gastroesophageal reflux, bacterial infection, and bone mineralization. The distribution of net economic return for 6 months of exclusivity varied substantially among products (net economic return ranged from -$8.9 million to $507.9 million and net return-to-cost ratio ranged from -0.68 to 73.63). CONCLUSIONS: The economic return for pediatric exclusivity is variable. As an incentive to complete much-needed clinical trials in children, pediatric exclusivity can generate lucrative returns or produce more modest returns on investment.Item Open Access Economics of new oncology drug development.(J Clin Oncol, 2007-01-10) DiMasi, Joseph A; Grabowski, Henry GPURPOSE: Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. METHODS: We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. RESULTS: We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. CONCLUSION: The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.Item Open Access Endpoint surrogacy in oncology Phase 3 randomised controlled trials.(British journal of cancer, 2020-08) Zhang, Jianrong; Pilar, Meagan R; Wang, Xiaofei; Liu, Jingxia; Pang, Herbert; Brownson, Ross C; Colditz, Graham A; Liang, Wenhua; He, JianxingEndpoint surrogacy is an important concept in oncology trials. Using a surrogate endpoint like progression-free survival as the primary endpoint-instead of overall survival-would lead to a potential faster drug approval and therefore more cancer patients with an earlier opportunity to receive the newly approved drugs.Item Open Access Participation of the elderly, women, and minorities in pivotal trials supporting 2011-2013 U.S. Food and Drug Administration approvals.(Trials, 2016-04) Downing, Nicholas S; Shah, Nilay D; Neiman, Joseph H; Aminawung, Jenerius A; Krumholz, Harlan M; Ross, Joseph SBackground
Pivotal trials, the clinical studies that inform U.S. Food and Drug Administration (FDA) approval decisions, provide the foundational evidence supporting the safety and efficacy of novel therapeutics. We determined the representation of the elderly, women, and patients from racial and ethnic minorities in pivotal trials and whether the FDA is making subgroup efficacy analyses among these subpopulations available to the public.Methods
We conducted a cross-sectional study of novel therapeutics approved by the FDA between 2011 and 2013. Using publicly available FDA documents, we collected information on the demographic characteristics of pivotal trial participants (age ≥65 years, sex [male, female], race [white, black, Asian, other], and ethnicity [Hispanic, non-Hispanic]) and determined the availability of subgroup analyses by age, sex, race, and ethnicity.Results
We identified 86 novel therapeutic that were approved by the FDA between 2011 and 2013 for 92 indications on the basis of 206 pivotal trials. The median age of pivotal trial patients was 53.1 years (interquartile range 40.6-60.6), and the mean proportion of patients ≥65 years of age was 28.9 % (95 % CI 23.5-34.4 %). Similar proportions of pivotal trial participants were male (mean 50.3 %, 95 % CI 45.3-55.2 %) and female (mean 49.7 %, 95 % CI 44.7-54.7 %). Most participants were white (mean 79.2 %, 95 % CI 75.9-82.6 %), while the mean proportion of black patients was 7.4 % (95 % CI 5.5-9.3 %), that of Asian patients was 7.4 % (95 % CI 5.2-9.7 %), and that of patients of other races was 5.9 % (95 % CI 4.4-7.5 %). Information about ethnicity was available for only 59.8 % of indications, and where such data were available, the mean proportion of Hispanic participants was 13.3 % (95 % CI 10.3-16.3 %). FDA reviewers performed and made available subgroup efficacy analyses by age, sex, and race for at least one of the pivotal trials used as the basis of approval for over 80 % of indications.Conclusions
Although women are equally represented in pivotal trials supporting recent novel therapeutic approvals by the FDA, elderly patients and those from racial and ethnic minorities are underrepresented. FDA reviewers generally perform subgroup efficacy analyses by age, sex, and race and make these subgroup analyses available to the public.Item Open Access Priorities for the Priority Review Voucher.(Am J Trop Med Hyg, 2017-01-11) Ridley, David BThe U.S. Congress created the priority review voucher program in 2007 to encourage development of drugs for neglected diseases. Under the voucher program, the developer of a drug for a neglected or rare pediatric disease that is approved by the U.S. Food and Drug Administration receives a bonus priority review voucher for another drug. As of 2016, four vouchers have sold for an average price of $200 million. Recent experience with the voucher program indicates strengths and weaknesses of the program, as well as a need for legislative changes.Item Open Access Regulatory and cost barriers are likely to limit biosimilar development and expected savings in the near future.(Health Aff (Millwood), 2014-06) Grabowski, Henry G; Guha, Rahul; Salgado, MariaIn March 2010 Congress established an abbreviated Food and Drug Administration approval pathway for biosimilars-drugs that are very similar but not identical to a reference biological product and cost less. Because bringing biosimilars to the market currently requires large investments of money, fewer biosimilars are expected to enter the biologics market than has been the case with generic drugs entering the small-molecule drug market. Additionally, given the high regulatory hurdles to obtaining interchangeability-which would allow pharmacists to substitute a biosimilar for its reference product, subject to evolving state substitution laws-most biosimilars will likely compete as therapeutic alternatives instead of as therapeutic equivalents. In other words, biosimilars will need to compete with their reference product on the basis of quality; price; and manufacturer's reputation with physicians, insurers, and patient groups. Biosimilars also will face dynamic competition from new biologics in the same therapeutic class-including "biobetters," which offer incremental improvements on reference products, such as extended duration of action. The prospects for significant cost savings from the use of biosimilars appear to be limited for the next several years, but their use should increase over time because of both demand- and supply-side factors.Item Open Access Spending on postapproval drug safety.(Health Aff (Millwood), 2006-03) Ridley, David; Kramer, Judith; Tilson, Hugh; Schulman, KevinWithdrawals of high-profile pharmaceuticals have focused attention on post-approval safety surveillance. There have been no systematic assessments of spending on postapproval safety. We surveyed drug manufacturers regarding safety efforts. Mean spending on postapproval safety per company in 2003 was 56 million dollars (0.3 percent of sales). Assuming a constant safety-to-sales ratio, we estimated that total spending on postapproval safety by the top twenty drug manufacturers was 800 million dollars in 2003. We also examined, using regression analysis, the relationship between the number of safety personnel and the number of initial adverse-event reports. This study offers information for the debate on proposed changes to safety surveillance.Item Open Access Strategic use of statistical thinking in drug development.(Stat Med, 2000-12-15) Rockhold, FWThe role of the statistician and statistical thinking in the pharmaceutical industry has evolved greatly in the last four or five decades. Regulatory developments and the changing face of the science of drug development have driven this evolution. The increasing regulatory requirement for statistical input in critical areas has facilitated a wider range of applications. The pace of change of science in general has brought statisticians into contact with a wider range of potential customers. More importantly, it has allowed the statistician to become increasingly involved in strategic issues with the possibility of influencing the direction of the business. However, it is not clear that the statistical profession in industry is adequately prepared for these opportunities either in attitude or training. Changing the statisticians' approach to their role and acquiring the correct training and experience are critical for the profession to optimize their contribution to the drug discovery and development processes.Item Open Access The price of innovation: new estimates of drug development costs.(J Health Econ, 2003-03) DiMasi, Joseph A; Hansen, Ronald W; Grabowski, Henry GThe research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation.Item Open Access The roles of patents and research and development incentives in biopharmaceutical innovation.(Health Aff (Millwood), 2015-02) Grabowski, Henry G; DiMasi, Joseph A; Long, GeniaPatents and other forms of intellectual property protection play essential roles in encouraging innovation in biopharmaceuticals. As part of the "21st Century Cures" initiative, Congress is reviewing the policy mechanisms designed to accelerate the discovery, development, and delivery of new treatments. Debate continues about how best to balance patent and intellectual property incentives to encourage innovation, on the one hand, and generic utilization and price competition, on the other hand. We review the current framework for accomplishing these dual objectives and the important role of patents and regulatory exclusivity (together, the patent-based system), given the lengthy, costly, and risky biopharmaceutical research and development process. We summarize existing targeted incentives, such as for orphan drugs and neglected diseases, and we consider the pros and cons of proposed voluntary or mandatory alternatives to the patent-based system, such as prizes and government research and development contracting. We conclude that patents and regulatory exclusivity provisions are likely to remain the core approach to providing incentives for biopharmaceutical research and development. However, prizes and other voluntary supplements could play a useful role in addressing unmet needs and gaps in specific circumstances.