Browsing by Subject "Drug Interactions"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae.(Neurotoxicology and teratology, 2018-05) Oliveri, Anthony N; Ortiz, Erica; Levin, Edward DHuman exposure to organophosphate flame retardants (OPFRs) is widespread, including pregnant women and young children with whom developmental neurotoxic risk is a concern. Given similarities of OPFRs to organophosphate (OP) pesticides, research into the possible neurotoxic impacts of developmental OPFR exposure has been growing. Building upon research implicating exposure to OP pesticides in dopaminergic (DA) dysfunction, we exposed developing zebrafish to the OPFR tris(1,3-dichloroisopropyl) phosphate (TDCIPP), during the first 5 days following fertilization. On day 6, larvae were challenged with acute administration of dopamine D1 and D2 receptor antagonists and then tested in a light-dark locomotor assay. We found that both developmental TDCIPP exposure and acute dopamine D1 and D2 antagonism decreased locomotor activity separately. The OPFR and DA effects were not additive; rather, TDCIPP blunted further D1 and D2 antagonist-induced decreases in activity. Our results suggest that TDCIPP exposure may be disrupting dopamine signaling. These findings support further research on the effects of OPFR exposure on the normal neurodevelopment of DA systems, whether these results might persist into adulthood, and whether they interact with OPFR effects on other neurotransmitter systems in producing the developmental neurobehavioral toxicity.Item Open Access Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor.(Am J Cardiovasc Drugs, 2013-10) Mendell, Jeanne; Zahir, Hamim; Matsushima, Nobuko; Noveck, Robert; Lee, Frank; Chen, Shuquan; Zhang, George; Shi, MinggaoBACKGROUND: Edoxaban, an oral direct factor Xa inhibitor, is in development for thromboprophylaxis, including prevention of stroke and systemic embolism in patients with atrial fibrillation (AF). P-glycoprotein (P-gp), an efflux transporter, modulates absorption and excretion of xenobiotics. Edoxaban is a P-gp substrate, and several cardiovascular (CV) drugs have the potential to inhibit P-gp and increase drug exposure. OBJECTIVE: To assess the potential pharmacokinetic interactions of edoxaban and 6 cardiovascular drugs used in the management of AF and known P-gp substrates/inhibitors. METHODS: Drug-drug interaction studies with edoxaban and CV drugs with known P-gp substrate/inhibitor potential were conducted in healthy subjects. In 4 crossover, 2-period, 2-treatment studies, subjects received edoxaban 60 mg alone and coadministered with quinidine 300 mg (n = 42), verapamil 240 mg (n = 34), atorvastatin 80 mg (n = 32), or dronedarone 400 mg (n = 34). Additionally, edoxaban 60 mg alone and coadministered with amiodarone 400 mg (n = 30) or digoxin 0.25 mg (n = 48) was evaluated in a single-sequence study and 2-cohort study, respectively. RESULTS: Edoxaban exposure measured as area under the curve increased for concomitant administration of edoxaban with quinidine (76.7 %), verapamil (52.7 %), amiodarone (39.8 %), and dronedarone (84.5 %), and exposure measured as 24-h concentrations for quinidine (11.8 %), verapamil (29.1 %), and dronedarone (157.6 %) also increased. Administration of edoxaban with amiodarone decreased the 24-h concentration for edoxaban by 25.7 %. Concomitant administration with digoxin or atorvastatin had minimal effects on edoxaban exposure. CONCLUSION: Coadministration of the P-gp inhibitors quinidine, verapamil, and dronedarone increased edoxaban exposure. Modest/minimal effects were observed for amiodarone, atorvastatin, and digoxin.Item Open Access Effect of ritonavir-induced cytochrome P450 3A4 inhibition on plasma fentanyl concentrations during patient-controlled epidural labor analgesia: a pharmacokinetic simulation.(Int J Obstet Anesth, 2014-02) Cambic, CR; Avram, MJ; Gupta, DK; Wong, CABACKGROUND: Ritonavir inhibition of cytochrome P450 3A4 decreases the elimination clearance of fentanyl by 67%. We used a pharmacokinetic model developed from published data to simulate the effect of sample patient-controlled epidural labor analgesic regimens on plasma fentanyl concentrations in the absence and presence of ritonavir-induced cytochrome P450 3A4 inhibition. METHODS: Fentanyl absorption from the epidural space was modeled using tanks-in-series delay elements. Systemic fentanyl disposition was described using a three-compartment pharmacokinetic model. Parameters for epidural drug absorption were estimated by fitting the model to reported plasma fentanyl concentrations measured after epidural administration. The validity of the model was assessed by comparing predicted plasma concentrations after epidural administration to published data. The effect of ritonavir was modeled as a 67% decrease in fentanyl elimination clearance. Plasma fentanyl concentrations were simulated for six sample patient-controlled epidural labor analgesic regimens over 24 h using ritonavir and control models. Simulated data were analyzed to determine if plasma fentanyl concentrations producing a 50% decrease in minute ventilation (6.1 ng/mL) were achieved. RESULTS: Simulated plasma fentanyl concentrations in the ritonavir group were higher than those in the control group for all sample labor analgesic regimens. Maximum plasma fentanyl concentrations were 1.8 ng/mL and 3.4 ng/mL for the normal and ritonavir simulations, respectively, and did not reach concentrations associated with 50% decrease in minute ventilation. CONCLUSION: Our model predicts that even with maximal clinical dosing regimens of epidural fentanyl over 24 h, ritonavir-induced cytochrome P450 3A4 inhibition is unlikely to produce plasma fentanyl concentrations associated with a decrease in minute ventilation.Item Open Access Individual Proton Pump Inhibitors and Outcomes in Patients With Coronary Artery Disease on Dual Antiplatelet Therapy: A Systematic Review.(J Am Heart Assoc, 2015-10-29) Sherwood, Matthew W; Melloni, Chiara; Jones, W Schuyler; Washam, Jeffrey B; Hasselblad, Vic; Dolor, Rowena JBACKGROUND: Observational studies evaluating the possible interaction between proton pump inhibitors (PPIs) and clopidogrel have shown mixed results. We conducted a systematic review comparing the safety of individual PPIs in patients with coronary artery disease taking clopidogrel. METHODS AND RESULTS: Studies performed from January 1995 to December 2013 were screened for inclusion. Data were extracted, and study quality was graded for 34 potential studies. For those studies in which follow-up period, outcomes, and multivariable adjustment were comparable, meta-analysis was performed.The adjusted odds or hazard ratios for the composite of cardiovascular or all-cause death, myocardial infarction, and stroke at 1 year were reported in 6 observational studies with data on individual PPIs. Random-effects meta-analyses of the 6 studies revealed an increased risk for adverse cardiovascular events for those taking pantoprazole (hazard ratio 1.38; 95% CI 1.12-1.70), lansoprazole (hazard ratio 1.29; 95% CI 1.09-1.52), or esomeprazole (hazard ratio 1.27; 95% CI 1.02-1.58) compared with patients on no PPI. This association was not significant for omeprazole (hazard ratio 1.16; 95% CI 0.93-1.44). Sensitivity analyses for the coronary artery disease population (acute coronary syndrome versus mixed) and exclusion of a single study due to heterogeneity of reported results did not have significant influence on the effect estimates for any PPIs. CONCLUSIONS: Several frequently used PPIs previously thought to be safe for concomitant use with clopidogrel were associated with greater risk of adverse cardiovascular events. Although the data are observational, they highlight the need for randomized controlled trials to evaluate the safety of concomitant PPI and clopidogrel use in patients with coronary artery disease.Item Open Access Microdosing and drug development: past, present and future.(Expert Opin Drug Metab Toxicol, 2013-07) Lappin, Graham; Noveck, Robert; Burt, TalINTRODUCTION: Microdosing is an approach to early drug development where exploratory pharmacokinetic data are acquired in humans using inherently safe sub-pharmacologic doses of drug. The first publication of microdose data was 10 years ago and this review comprehensively explores the microdose concept from conception, over the past decade, up until the current date. AREAS COVERED: The authors define and distinguish the concept of microdosing from similar approaches. The authors review the ability of microdosing to provide exploratory pharmacokinetics (concentration-time data) but exclude microdosing using positron emission tomography. The article provides a comprehensive review of data within the peer-reviewed literature as well as the latest applications and a look into the future, towards where microdosing may be headed. EXPERT OPINION: Evidence so far suggests that microdosing may be a better predictive tool of human pharmacokinetics than alternative methods and combination with physiologically based modelling may lead to much more reliable predictions in the future. The concept has also been applied to drug-drug interactions, polymorphism and assessing drug concentrations over time at its site of action. Microdosing may yet have more to offer in unanticipated directions and provide benefits that have not been fully realised to date.Item Open Access Survey of methadone-drug interactions among patients of methadone maintenance treatment program in Taiwan.(Subst Abuse Treat Prev Policy, 2012-03-20) Lee, HY; Li, JH; Wu, LT; Wu, JS; Yen, CF; Tang, HPBACKGROUND: Although methadone has been used for the maintenance treatment of opioid dependence for decades, it was not introduced in China or Taiwan until 2000s. Methadone-drug interactions (MDIs) have been shown to cause many adverse effects. However, such effects have not been scrutinized in the ethnic Chinese community. METHODS: The study was performed in two major hospitals in southern Taiwan. A total of 178 non-HIV patients aged ≥ 20 years who had participated in the Methadone Maintenance Treatment Program (MMTP) ≥ 1 month were recruited. An MDI is defined as concurrent use of drug(s) with methadone that may result in an increase or decrease of effectiveness and/or adverse effect of methadone. To determine the prevalence and clinical characteristics of MDIs, credible data sources, including the National Health Insurance (NHI) database, face-to-face interviews, medical records, and methadone computer databases, were linked for analysis. Socio-demographic and clinical factors associated with MDIs and co-medications were also examined. RESULTS: 128 (72%) MMTP patients took at least one medication. Clinically significant MDIs included withdrawal symptoms, which were found among MMTP patients co-administered with buprenorphine or tramadol; severe QTc prolongation effect, which might be associated with use of haloperidol or droperidol; and additive CNS and respiratory depression, which could result from use of methadone in combination with chlorpromazine or thioridazine. Past amphetamine use, co-infection with hepatitis C, and a longer retention in the MMTP were associated with increased odds of co-medication. Among patients with co-medication use, significant correlates of MDIs included the male gender and length of co-medication in the MMTP. CONCLUSIONS: The results demonstrate clinical evidence of significant MDIs among MMTP patients. Clinicians should check the past medical history of MMTP clients carefully before prescribing medicines. Because combinations of methadone with other psychotropic or opioid medications can affect treatment outcomes or precipitate withdrawal symptoms, clinicians should be cautious when prescribing these medications to MMTP patients and monitor the therapeutic effects and adverse drug reactions. Although it is difficult to interconnect medical data from different sources for the sake of privacy protection, the incumbent agency should develop pharmacovigilant measures to prevent the MDIs from occurring. Physicians are also advised to check more carefully on the medication history of their MMTP patients.Item Open Access The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin.(Drugs, 2021-10) Hoenigl, Martin; Sprute, Rosanne; Egger, Matthias; Arastehfar, Amir; Cornely, Oliver A; Krause, Robert; Lass-Flörl, Cornelia; Prattes, Juergen; Spec, Andrej; Thompson, George R; Wiederhold, Nathan; Jenks, Jeffrey DThe epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.