Browsing by Subject "Drug Synergism"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity.(eLife, 2019-11) Palmer, Adam C; Chidley, Christopher; Sorger, Peter KCurative cancer therapies are uncommon and nearly always involve multi-drug combinations developed by experimentation in humans; unfortunately, the mechanistic basis for the success of such combinations has rarely been investigated in detail, obscuring lessons learned. Here, we use isobologram analysis to score pharmacological interaction, and clone tracing and CRISPR screening to measure cross-resistance among the five drugs comprising R-CHOP, a combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in R-CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model and the Bliss effect-independence model. These data provide direct evidence for the 50 year old hypothesis that a curative cancer therapy can be constructed on the basis of independently effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction, which has immediate significance for the design of new drug combinations.Item Open Access A randomized, double-blind, placebo-controlled trial of pramipexole augmentation in treatment-resistant major depressive disorder.(The Journal of clinical psychiatry, 2013-07) Cusin, Cristina; Iovieno, Nadia; Iosifescu, Dan V; Nierenberg, Andrew A; Fava, Maurizio; Rush, A John; Perlis, Roy HBackground
Multiple treatments for patients with major depressive disorder (MDD) have demonstrated efficacy, but up to one-third of individuals with MDD do not achieve symptomatic remission despite various interventions. Existing augmentation or combination strategies can have substantial safety concerns that may limit their application.Method
This study investigated the antidepressant efficacy of a flexible dose of the dopamine agonist pramipexole as an adjunct to standard antidepressant treatment in an 8-week, randomized, double-blind, placebo-controlled trial conducted in a tertiary-level depression center. We randomized 60 outpatients (aged 18 to 75 years) with treatment-resistant nonpsychotic MDD (diagnosed according to DSM-IV) to either pramipexole (n = 30) or placebo (n = 30). Treatment resistance was defined as continued depression (Montgomery-Asberg Depression Rating Scale [MADRS] score ≥ 18) despite treatment with at least 1 prior antidepressant in the current depressive episode. Patients were recruited between September 2005 and April 2008. The primary outcome measure was the MADRS score.Results
The analyses that used a mixed-effects linear regression model indicated a modest but statistically significant benefit for pramipexole (P = .038). The last-observation-carried-forward analyses indicated that 40% and 33% of patients randomized to augmentation with pramipexole achieved response (χ(2) = 1.2, P = .27) and remission (χ(2) = 0.74, P = .61), respectively, compared to 27% and 23% with placebo; however, those differences were not statistically significant. Augmentation with pramipexole was well-tolerated, with no serious adverse effects identified.Conclusion
For patients who have failed to respond to standard antidepressant therapies, pramipexole is a safe and potentially efficacious augmentation strategy.Trial registration
ClinicalTrials.gov identifier: NCT00231959.Item Open Access An evaluation of remifentanil-sevoflurane response surface models in patients emerging from anesthesia: model improvement using effect-site sevoflurane concentrations.(Anesth Analg, 2010-08) Johnson, Ken B; Syroid, Noah D; Gupta, Dhanesh K; Manyam, Sandeep C; Pace, Nathan L; LaPierre, Cris D; Egan, Talmage D; White, Julia L; Tyler, Diane; Westenskow, Dwayne RINTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.Item Open Access Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.(PLoS One, 2014) Radiloff, Daniel; Zhao, Yulin; Boico, Alina; Blueschke, Gert; Palmer, Gregory; Fontanella, Andrew; Dewhirst, Mark; Piantadosi, Claude A; Noveck, Robert; Irwin, David; Hamilton, Karyn; Klitzman, Bruce; Schroeder, ThiesRapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.Item Open Access Diphenhydramine increases the therapeutic window for platinum drugs by simultaneously sensitizing tumor cells and protecting normal cells.(Molecular oncology, 2020-04) Melnikova, Margarita; Wauer, Ulrike Sophie; Mendus, Diana; Hilger, Ralf Axel; Oliver, Trudy G; Mercer, Kim; Gohlke, Björn Oliver; Erdmann, Kati; Niederacher, Dieter; Neubauer, Hans; Buderath, Paul; Wimberger, Pauline; Kuhlmann, Jan Dominik; Thomale, JürgenPlatinum-based compounds remain a well-established chemotherapy for cancer treatment despite their adverse effects which substantially restrict the therapeutic windows of the drugs. Both the cell type-specific toxicity and the clinical responsiveness of tumors have been associated with mechanisms that alter drug entry and export. We sought to identify pharmacological agents that promote cisplatin (CP) efficacy by augmenting the levels of drug-induced DNA lesions in malignant cells and simultaneously protecting normal tissues from accumulating such damage and from functional loss. Formation and persistence of platination products in the DNA of individual nuclei were measured in drug-exposed cell lines, in primary human tumor cells and in tissue sections using an immunocytochemical method. Using a mouse model of CP-induced toxicity, the antihistaminic drug diphenhydramine (DIPH) and two methylated derivatives decreased DNA platination in normal tissues and also ameliorated nephrotoxicity, ototoxicity, and neurotoxicity. In addition, DIPH sensitized multiple cancer cell types, particularly ovarian cancer cells, to CP by increasing intracellular uptake, DNA platination, and/or apoptosis in cell lines and in patient-derived primary tumor cells. Mechanistically, DIPH diminished transport capacity of CP efflux pumps MRP2, MRP3, and MRP5 particularly in its C2+C6 bimethylated form. Overall, we demonstrate that DIPH reduces side effects of platinum-based chemotherapy and simultaneously inhibits key mechanisms of platinum resistance. We propose that measuring DNA platination after ex vivo exposure may predict the responsiveness of individual tumors to DIPH-like modulators.Item Open Access Interception of host angiogenic signalling limits mycobacterial growth.(Nature, 2015-01-29) Oehlers, Stefan H; Cronan, Mark R; Scott, Ninecia R; Thomas, Monica I; Okuda, Kazuhide S; Walton, Eric M; Beerman, Rebecca W; Crosier, Philip S; Tobin, David MPathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.Item Open Access Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage.(Stroke, 2011-02) Sheng, H; Reynolds, JD; Auten, RL; Demchenko, IT; Piantadosi, CA; Stamler, JS; Warner, DSBackground and purpose
S-nitrosylated hemoglobin (S-nitrosohemoglobin) has been implicated in the delivery of O(2) to tissues through the regulation of microvascular blood flow. This study tested the hypothesis that enhancement of S-nitrosylated hemoglobin by ethyl nitrite inhalation improves outcome after experimental subarachnoid hemorrhage (SAH).Methods
A preliminary dosing study identified 20 ppm ethyl nitrite as a concentration that produced a 4-fold increase in S-nitrosylated hemoglobin concentration with no increase in methemoglobin. Mice were subjected to endovascular perforation of the right anterior cerebral artery and were treated with 20 ppm ethyl nitrite in air, or air alone for 72 hours, after which neurologic function, cerebral vessel diameter, brain water content, cortical tissue Po(2), and parenchymal red blood cell flow velocity were measured.Results
At 72 hours after hemorrhage, air- and ethyl nitrite-exposed mice had similarly sized blood clots. Ethyl nitrite improved neurologic score and rotarod performance; abated SAH-induced constrictions in the ipsilateral anterior, middle cerebral, and internal carotid arteries; and prevented an increase in ipsilateral brain water content. Ethyl nitrite inhalation increased red blood cell flow velocity and cortical tissue Po(2) in the ipsilateral cortex with no effect on systemic blood pressure.Conclusions
Targeted S-nitrosylation of hemoglobin improved outcome parameters, including vessel diameter, tissue blood flow, cortical tissue Po(2), and neurologic function in a murine SAH model. Augmenting endogenous Po(2)-dependent delivery of NO bioactivity to selectively dilate the compromised cerebral vasculature has significant clinical potential in the treatment of SAH.Item Open Access Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors.(PloS one, 2019-01-09) Yu, Xin; Dobrikov, Mikhail; Keir, Stephen T; Gromeier, Matthias; Pastan, Ira H; Reisfeld, Ralph; Bigner, Darell D; Chandramohan, VidyalakshmiStandard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors.Item Open Access The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems.(Toxicological sciences : an official journal of the Society of Toxicology, 2019-01) Slotkin, Theodore A; Skavicus, Samantha; Ko, Ashley; Levin, Edward D; Seidler, Frederic JTobacco smoke contains polycyclic aromatic hydrocarbons (PAHs) in addition to nicotine. We compared the developmental neurotoxicity of nicotine to that of the PAH archetype, benzo[a]pyrene (BaP), and also evaluated the effects of combined exposure to assess whether PAHs might exacerbate the adverse effects of nicotine. Pregnant rats were treated preconception through the first postnatal week, modeling nicotine concentrations in smokers and a low BaP dose devoid of systemic effects. We conducted evaluations of acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT) systems in brain regions from adolescence through full adulthood. Nicotine or BaP alone impaired indices of ACh presynaptic activity, accompanied by upregulation of nicotinic ACh receptors and 5HT receptors. Combined treatment elicited a greater deficit in ACh presynaptic activity than that seen with either agent alone, and upregulation of nAChRs and 5HT receptors was impaired or absent. The individual effects of nicotine and BaP accounted for only 60% of the combination effects, which thus displayed unique properties. Importantly, the combined nicotine + BaP exposure recapitulated the effects of tobacco smoke, distinct from nicotine. Our results show that the effects of nicotine on development of ACh and 5HT systems are worsened by BaP coexposure, and that combination of the two agents contributes to the greater impact of tobacco smoke on the developing brain. These results have important implications for the relative safety in pregnancy of nicotine-containing products compared with combusted tobacco, both for active maternal smoking and secondhand exposure, and for the effects of such agents in "dirty" environments with high PAH coexposure.