Browsing by Subject "EQUILIBRIUM"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Nonequilibrium quantum transport through a dissipative resonant level(Physical Review B - Condensed Matter and Materials Physics, 2013-06-21) Chung, CH; Le Hur, K; Finkelstein, G; Vojta, M; Wölfle, PThe resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization-group approach is applied to compute the nonequilibrium current in the presence of a finite bias voltage V. In the linear-response regime V→0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the nonequilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the nonequilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for VT. We furthermore provide different signatures of the transition in the finite-frequency current noise and ac conductance via a recently developed functional renormalization group (FRG) approach. The generalization of our analysis to nonequilibrium transport through a resonant level coupled to two chiral Luttinger liquid leads, generated by fractional quantum Hall edge states, is discussed. Our work on the dissipative resonant level has direct relevance to experiments on a quantum dot coupled to a resistive environment, such as H. Mebrahtu,. © 2013 American Physical Society.Item Open Access Postponing the dynamical transition density using competing interactions(Granular Matter, 2020-08-01) Charbonneau, P; Kundu, JSystems of dense spheres interacting through very short-ranged attraction are known from theory, simulations and colloidal experiments to exhibit dynamical reentrance. Their liquid state can thus be fluidized at higher densities than possible in systems with pure repulsion or with long-ranged attraction. A recent mean-field, infinite-dimensional calculation predicts that the dynamical arrest of the fluid can be further delayed by adding a longer-ranged repulsive contribution to the short-ranged attraction. We examine this proposal by performing extensive numerical simulations in a three-dimensional system. We first find the short-ranged attraction parameters necessary to achieve the densest liquid state, and then explore the parameter space for an additional longer-ranged repulsion that could further enhance reentrance. In the family of systems studied, no significant (within numerical accuracy) delay of the dynamical arrest is observed beyond what is already achieved by the short-ranged attraction. Possible explanations are discussed.Item Open Access The effect of accelerated soil erosion on hillslope morphology(Earth Surface Processes and Landforms, 2019-12-01) Bonetti, S; Richter, DD; Porporato, A© 2019 John Wiley & Sons, Ltd. Intensive agricultural land use can have detrimental effects on landscape properties, greatly accelerating soil erosion, with consequent fertility loss and reduced agricultural potential. To quantify the effects of such erosional processes on hillslope morphology and gain insight into the underlying dynamics, we use a twofold approach. First, a statistical analysis of topographical features is conducted, with a focus on slope and gradient distributions. The accelerated soil erosion is shown to be fingerprinted in the distribution tails, which provide a clear statistical signature of this human-induced land modification. Theoretical solutions are then derived for the hillslope morphology and the associated creep and runoff erosion fluxes, allowing us to distinguish between the main erosional mechanisms operating in disturbed and undisturbed areas. We focus our application on the landscape at the Calhoun Critical Zone Observatory in the US Southern Piedmont, where severe soil erosion followed intensive cotton cultivation, resulting in highly eroded and gullied hillslopes. The observed differences in hillslope morphologies in disturbed and undisturbed areas are shown to be related to the disruption of the natural balance between soil creep and runoff erosion. The relaxation time required for the disturbed hillslopes to reach a quasi-equilibrium condition is also investigated. © 2019 John Wiley & Sons, Ltd.