Browsing by Subject "Earth, Planet"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Hierarchical complexity and the size limits of life.(Proceedings. Biological sciences, 2017-06) Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve COver the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases.Item Open Access How to protect half of Earth to ensure it protects sufficient biodiversity.(Science advances, 2018-08-29) Pimm, Stuart L; Jenkins, Clinton N; Li, Binbin VIt is theoretically possible to protect large fractions of species in relatively small regions. For plants, 85% of species occur entirely within just over a third of the Earth's land surface, carefully optimized to maximize the species captured. Well-known vertebrate taxa show similar patterns. Protecting half of Earth might not be necessary, but would it be sufficient given the current trends of protection? The predilection of national governments is to protect areas that are "wild," that is, typically remote, cold, or arid. Unfortunately, those areas often hold relatively few species. Wild places likely afford the easier opportunities for the future expansion of protected areas, with the expansion into human-dominated landscapes the greater challenge. We identify regions that are not currently protected, but that are wild, and consider which of them hold substantial numbers of especially small-ranged vertebrate species. We assess how successful the strategy of protecting the wilder half of Earth might be in conserving biodiversity. It is far from sufficient. (Protecting large wild places for reasons other than biodiversity protection, such as carbon sequestration and other ecosystem services, might still have importance.) Unexpectedly, we also show that, despite the bias in establishing large protected areas in wild places to date, numerous small protected areas are in biodiverse places. They at least partially protect significant fractions of especially small-ranged species. So, while a preoccupation with protecting large areas for the sake of getting half of Earth might achieve little for biodiversity, there is more progress in protecting high-biodiversity areas than currently appreciated. Continuing to prioritize the right parts of Earth, not just the total area protected, is what matters for biodiversity.Item Open Access Long-term thermal sensitivity of Earth's tropical forests.(Science (New York, N.Y.), 2020-05-21) Sullivan, Martin JP; Lewis, Simon L; Affum-Baffoe, Kofi; Castilho, Carolina; Costa, Flávia; Sanchez, Aida Cuni; Ewango, Corneille EN; Hubau, Wannes; Marimon, Beatriz; Monteagudo-Mendoza, Abel; Qie, Lan; Sonké, Bonaventure; Martinez, Rodolfo Vasquez; Baker, Timothy R; Brienen, Roel JW; Feldpausch, Ted R; Galbraith, David; Gloor, Manuel; Malhi, Yadvinder; Aiba, Shin-Ichiro; Alexiades, Miguel N; Almeida, Everton C; de Oliveira, Edmar Almeida; Dávila, Esteban Álvarez; Loayza, Patricia Alvarez; Andrade, Ana; Vieira, Simone Aparecida; Aragão, Luiz EOC; Araujo-Murakami, Alejandro; Arets, Eric JMM; Arroyo, Luzmila; Ashton, Peter; Aymard C, Gerardo; Baccaro, Fabrício B; Banin, Lindsay F; Baraloto, Christopher; Camargo, Plínio Barbosa; Barlow, Jos; Barroso, Jorcely; Bastin, Jean-François; Batterman, Sarah A; Beeckman, Hans; Begne, Serge K; Bennett, Amy C; Berenguer, Erika; Berry, Nicholas; Blanc, Lilian; Boeckx, Pascal; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Bradford, Matt; Brearley, Francis Q; Brncic, Terry; Brown, Foster; Burban, Benoit; Camargo, José Luís; Castro, Wendeson; Céron, Carlos; Ribeiro, Sabina Cerruto; Moscoso, Victor Chama; Chave, Jerôme; Chezeaux, Eric; Clark, Connie J; de Souza, Fernanda Coelho; Collins, Murray; Comiskey, James A; Valverde, Fernando Cornejo; Medina, Massiel Corrales; da Costa, Lola; Dančák, Martin; Dargie, Greta C; Davies, Stuart; Cardozo, Nallaret Davila; de Haulleville, Thales; de Medeiros, Marcelo Brilhante; Del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Doucet, Jean-Louis; Dourdain, Aurélie; Droissart, Vincent; Duque, Luisa Fernanda; Ekoungoulou, Romeo; Elias, Fernando; Erwin, Terry; Esquivel-Muelbert, Adriane; Fauset, Sophie; Ferreira, Joice; Llampazo, Gerardo Flores; Foli, Ernest; Ford, Andrew; Gilpin, Martin; Hall, Jefferson S; Hamer, Keith C; Hamilton, Alan C; Harris, David J; Hart, Terese B; Hédl, Radim; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Hladik, Annette; Coronado, Eurídice Honorio; Huamantupa-Chuquimaco, Isau; Huasco, Walter Huaraca; Jeffery, Kathryn J; Jimenez-Rojas, Eliana; Kalamandeen, Michelle; Djuikouo, Marie Noël Kamdem; Kearsley, Elizabeth; Umetsu, Ricardo Keichi; Kho, Lip Khoon; Killeen, Timothy; Kitayama, Kanehiro; Klitgaard, Bente; Koch, Alexander; Labrière, Nicolas; Laurance, William; Laurance, Susan; Leal, Miguel E; Levesley, Aurora; Lima, Adriano JN; Lisingo, Janvier; Lopes, Aline P; Lopez-Gonzalez, Gabriela; Lovejoy, Tom; Lovett, Jon C; Lowe, Richard; Magnusson, William E; Malumbres-Olarte, Jagoba; Manzatto, Ângelo Gilberto; Marimon, Ben Hur; Marshall, Andrew R; Marthews, Toby; de Almeida Reis, Simone Matias; Maycock, Colin; Melgaço, Karina; Mendoza, Casimiro; Metali, Faizah; Mihindou, Vianet; Milliken, William; Mitchard, Edward TA; Morandi, Paulo S; Mossman, Hannah L; Nagy, Laszlo; Nascimento, Henrique; Neill, David; Nilus, Reuben; Vargas, Percy Núñez; Palacios, Walter; Camacho, Nadir Pallqui; Peacock, Julie; Pendry, Colin; Peñuela Mora, Maria Cristina; Pickavance, Georgia C; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Poorter, Lourens; Poulsen, John R; Poulsen, Axel Dalberg; Preziosi, Richard; Prieto, Adriana; Primack, Richard B; Ramírez-Angulo, Hirma; Reitsma, Jan; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; de Sousa, Thaiane Rodrigues; Bayona, Lily Rodriguez; Roopsind, Anand; Rudas, Agustín; Rutishauser, Ervan; Abu Salim, Kamariah; Salomão, Rafael P; Schietti, Juliana; Sheil, Douglas; Silva, Richarlly C; Espejo, Javier Silva; Valeria, Camila Silva; Silveira, Marcos; Simo-Droissart, Murielle; Simon, Marcelo Fragomeni; Singh, James; Soto Shareva, Yahn Carlos; Stahl, Clement; Stropp, Juliana; Sukri, Rahayu; Sunderland, Terry; Svátek, Martin; Swaine, Michael D; Swamy, Varun; Taedoumg, Hermann; Talbot, Joey; Taplin, James; Taylor, David; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Thomas, Sean C; Torres-Lezama, Armando; Umunay, Peter; Gamarra, Luis Valenzuela; van der Heijden, Geertje; van der Hout, Peter; van der Meer, Peter; van Nieuwstadt, Mark; Verbeeck, Hans; Vernimmen, Ronald; Vicentini, Alberto; Vieira, Ima Célia Guimarães; Torre, Emilio Vilanova; Vleminckx, Jason; Vos, Vincent; Wang, Ophelia; White, Lee JT; Willcock, Simon; Woods, John T; Wortel, Verginia; Young, Kenneth; Zagt, Roderick; Zemagho, Lise; Zuidema, Pieter A; Zwerts, Joeri A; Phillips, Oliver LThe sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.