Browsing by Subject "Echinocandins"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Breakthrough invasive fungal infections: Who is at risk?(Mycoses, 2020-10) Jenks, Jeffrey D; Cornely, Oliver A; Chen, Sharon C-A; Thompson, George R; Hoenigl, MartinThe epidemiology of invasive fungal infections (IFIs) in immunocompromised individuals has changed over the last few decades, partially due to the increased use of antifungal agents to prevent IFIs. Although this strategy has resulted in an overall reduction in IFIs, a subset of patients develop breakthrough IFIs with substantial morbidity and mortality in this population. Here, we review the most significant risk factors for breakthrough IFIs in haematology patients, solid organ transplant recipients, and patients in the intensive care unit, focusing particularly on host factors, and highlight areas that require future investigation.Item Open Access Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.(PLoS One, 2015) Falloon, Katie; Juvvadi, Praveen R; Richards, Amber D; Vargas-Muñiz, José M; Renshaw, Hilary; Steinbach, William JInvasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.Item Open Access Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.(Nature communications, 2016-03) Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David SThe fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy.Item Open Access β-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study.(PloS one, 2012-01) Hanson, Kimberly E; Pfeiffer, Christopher D; Lease, Erika D; Balch, Alfred H; Zaas, Aimee K; Perfect, John R; Alexander, Barbara DBackground
Invasive candidiasis (IC) is a devastating disease. While prompt antifungal therapy improves outcomes, empiric treatment based on the presence of fever has little clinical impact. Β-D-Glucan (BDG) is a fungal cell wall component detectable in the serum of patients with early invasive fungal infection (IFI). We evaluated the utility of BDG surveillance as a guide for preemptive antifungal therapy in at-risk intensive care unit (ICU) patients.Methods
Patients admitted to the ICU for ≥ 3 days and expected to require at least 2 additional days of intensive care were enrolled. Subjects were randomized in 3:1 fashion to receive twice weekly BDG surveillance with preemptive anidulafungin in response to a positive test or empiric antifungal treatment based on physician preference.Results
Sixty-four subjects were enrolled, with 1 proven and 5 probable cases of IC identified over a 2.5 year period. BDG levels were higher in subjects with proven/probable IC as compared to those without an IFI (117 pg/ml vs. 28 pg/ml; p<0.001). Optimal assay performance required 2 sequential BDG determinations of ≥ 80 pg/ml to define a positive test (sensitivity 100%, specificity 75%, positive predictive value 30%, negative predictive value 100%). In all, 21 preemptive and 5 empiric subjects received systemic antifungal therapy. Receipt of preemptive antifungal treatment had a significant effect on BDG concentrations (p< 0.001). Preemptive anidulafungin was safe and generally well tolerated with excellent outcome.Conclusions
BDG monitoring may be useful for identifying ICU patients at highest risk to develop an IFI as well as for monitoring treatment response. Preemptive strategies based on fungal biomarkers warrant further study.Trial registration
Clinical Trials.gov NCT00672841.