Browsing by Subject "Electric Stimulation"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Open Access 16-Channel biphasic current-mode programmable charge balanced neural stimulation.(Biomedical engineering online, 2017-08) Li, Xiaoran; Zhong, Shunan; Morizio, JamesBackground
Neural stimulation is an important method used to activate or inhibit action potentials of the neuronal anatomical targets found in the brain, central nerve and peripheral nerve. The neural stimulator system produces biphasic pulses that deliver balanced charge into tissue from single or multichannel electrodes. The timing and amplitude of these biphasic pulses are precisely controlled by the neural stimulator software or imbedded algorithms. Amplitude mismatch between the anodic current and cathodic current of the biphasic pulse will cause permanently damage for the neural tissues. The main goal of our circuit and layout design is to implement a 16-channel biphasic current mode programmable neural stimulator with calibration to minimize the current mismatch caused by inherent complementary metal oxide semiconductor (CMOS) manufacturing processes.Methods
This paper presents a 16-channel constant current mode neural stimulator chip. Each channel consists of a 7-bit controllable current DAC used as sink and source current driver. To reduce the LSB quantization error and the current mismatch, an automatic calibration circuit and flow diagram is presented in this paper. There are two modes of operation of the stimulator chip-namely, stimulation mode and calibration mode. The chip also includes a digital interface used to control the stimulator parameters and calibration levels specific for each individual channel.Results
This stimulator Application Specific Integrated Circuit (ASIC) is designed and fabricated in a 0.18 μm High-Voltage CMOS technology that allows for ±20 V power supply. The full-scale stimulation current was designed to be at 1 mA per channel. The output current was shown to be constant throughout the timing cycles over a wide range of electrode load impedances. The calibration circuit was also designed to reduce the effect of CMOS process variation of the P-channel metal oxide semiconductor (PMOS) and N-channel metal oxide semiconductor (NMOS) devices that will result in charge delivery to have less than 0.13% error.Conclusions
A 16-channel integrated biphasic neural stimulator chip with calibration is presented in this paper. The stimulator circuit design was simulated and the chip layout was completed. The chip layout was verified using design rules check (DRC) and layout versus schematic (LVS) design check using computer aided design (CAD) software. The test results we presented show constant current stimulation with charge balance error within 0.13% least-significant-bit (LSB). This LSB error was consistent throughout a variety stimulation patterns and electrode load impedances.Item Open Access Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen.(Journal of applied physiology (Bethesda, Md. : 1985), 2014-09) Demchenko, Ivan T; Gasier, Heath G; Zhilyaev, Sergei Yu; Moskvin, Alexander N; Krivchenko, Alexander I; Piantadosi, Claude A; Allen, Barry WUnexplained adjustments in baroreflex sensitivity occur in conjunction with exposures to potentially toxic levels of hyperbaric oxygen. To investigate this, we monitored central nervous system, autonomic and cardiovascular responses in conscious and anesthetized rats exposed to hyperbaric oxygen at 5 and 6 atmospheres absolute, respectively. We observed two contrasting phases associated with time-dependent alterations in the functional state of the arterial baroreflex. The first phase, which conferred protection against potentially neurotoxic doses of oxygen, was concurrent with an increase in baroreflex sensitivity and included decreases in cerebral blood flow, heart rate, cardiac output, and sympathetic drive. The second phase was characterized by baroreflex impairment, cerebral hyperemia, spiking on the electroencephalogram, increased sympathetic drive, parasympatholysis, and pulmonary injury. Complete arterial baroreceptor deafferentation abolished the initial protective response, whereas electrical stimulation of intact arterial baroreceptor afferents prolonged it. We concluded that increased afferent traffic attributable to arterial baroreflex activation delays the development of excessive central excitation and seizures. Baroreflex inactivation or impairment removes this protection, and seizures may follow. Finally, electrical stimulation of intact baroreceptor afferents extends the normal delay in seizure development. These findings reveal that the autonomic nervous system is a powerful determinant of susceptibility to sympathetic hyperactivation and seizures in hyperbaric oxygen and the ensuing neurogenic pulmonary injury.Item Open Access Building an organic computing device with multiple interconnected brains.(Scientific reports, 2015-07-09) Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel ALRecently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers.Item Open Access Circuit topology and control principle for a first magnetic stimulator with fully controllable waveform.(Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2012-01) Goetz, SM; Pfaeffl, M; Huber, J; Singer, M; Marquardt, R; Weyh, TMagnetic stimulation pulse sources are very inflexible high-power devices. The incorporated circuit topology is usually limited to a single pulse type. However, experimental and theoretical work shows that more freedom in choosing or even designing waveforms could notably enhance existing methods. Beyond that, it even allows entering new fields of application. We propose a technology that can solve the problem. Even in very high frequency ranges, the circuitry is very flexible and is able generate almost every waveform with unrivaled accuracy. This technology can dynamically change between different pulse shapes without any reconfiguration, recharging or other changes; thus the waveform can be modified also during a high-frequency repetitive pulse train. In addition to the option of online design and generation of still unknown waveforms, it amalgamates all existing device types with their specific pulse shapes, which have been leading an independent existence in the past years. These advantages were achieved by giving up the common basis of all magnetic stimulation devices so far, i.e., the high-voltage oscillator. Distributed electronics handle the high power dividing the high voltage and the required switching rate into small portions.Item Open Access Compensatory saccades made to remembered targets following orbital displacement by electrically stimulating the dorsomedial frontal cortex or frontal eye fields of primates.(Brain Res, 1996-07-15) Tehovnik, EJ; Sommer, MAIf the eye-position signal during visually-evoked saccades is dependent on the dorsomedial frontal cortex (DMFC), one would expect that saccades generated to briefly presented visual targets would be disrupted after displacement of the eyes via electrical stimulation of this cortical area. Compared are compensatory saccades evoked to brief targets following stimulation of the DMFC and frontal eye fields (FEF). Compensatory saccades produced to brief targets following perturbation via the DMFC were not affected. Accordingly, electrical stimulation of the DMFC does not disrupt the eye-position signal during the execution of visually-evoked saccades.Item Open Access Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.(J Neurophysiol, 2000-04) Sommer, MA; Wurtz, RHThe frontal eye field (FEF) and superior colliculus (SC) contribute to saccadic eye movement generation, and much of the FEF's oculomotor influence may be mediated through the SC. The present study examined the composition and topographic organization of signals flowing from FEF to SC by recording from FEF neurons that were antidromically activated from rostral or caudal SC. The first and most general result was that, in a sample of 88 corticotectal neurons, the types of signals relayed from FEF to SC were highly diverse, reflecting the general population of signals within FEF rather than any specific subset of signals. Second, many neurons projecting from FEF to SC carried signals thought to reflect cognitive operations, namely tonic discharges during the delay period of a delayed-saccade task (delay signals), elevated discharges during the gap period of a gap task (gap increase signals), or both. Third, FEF neurons discharging during fixation were found to project to the SC, although they did not project preferentially to rostral SC, where similar fixation neurons are found. Neurons that did project preferentially to the rostral SC were those with foveal visual responses and those pausing during the gap period of the gap task. Many of the latter neurons also had foveal visual responses, presaccadic pauses in activity, and postsaccadic increases in activity. These two types of rostral-projecting neurons therefore may contribute to the activity of rostral SC fixation neurons. Fourth, conduction velocity was used as an indicator of cell size to correct for sampling bias. The outcome of this correction procedure suggested that among the most prevalent neurons in the FEF corticotectal population are those carrying putative cognitive-related signals, i.e., delay and gap increase signals, and among the least prevalent are those carrying presaccadic burst discharges but lacking peripheral visual responses. Fifth, corticotectal neurons carrying various signals were biased topographically across the FEF. Neurons with peripheral visual responses but lacking presaccadic burst discharges were biased laterally, neurons with presaccadic burst discharges but lacking peripheral visual responses were biased medially, and neurons carrying delay or gap increase signals were biased dorsally. Finally, corticotectal neurons were distributed within the FEF as a function of their visual or movement field eccentricity and projected to the SC such that eccentricity maps in both structures were closely aligned. We conclude that the FEF most likely influences the activity of SC neurons continuously from the start of fixation, through visual analysis and cognitive manipulations, until a saccade is generated and fixation begins anew. Furthermore, the projection from FEF to SC is highly topographically organized in terms of function at both its source and its termination.Item Open Access Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2016-05) Pages, Daniel S; Ross, Deborah A; Puñal, Vanessa M; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M; Wilson, Blake S; Groh, Jennifer MUnderstanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 μA, 100-300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts.Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants.Item Open Access Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas.(Exp Brain Res, 1997-12) Tehovnik, EJ; Sommer, MAUsing electrical stimulation to evoke saccades from the dorsomedial frontal cortex (DMFC) and frontal eye fields (FEF) of rhesus monkeys, parametric tests were conducted to compare the excitability properties of these regions. Pulse frequency and pulse current, pulse frequency and train duration, and pulse current and pulse duration were varied to determine threshold functions for a 50% probability of evoking a saccade. Also a wide range of frequencies were tested to evoke saccades, while holding all other parameters constant. For frequencies beyond 150 Hz, the probability of evoking saccades decreased for the DMFC, whereas for the FEF this probability remained at 100%. To evoke saccades readily from the DMFC, train durations of greater than 200 ms were needed; for the FEF, durations of less than 100 ms were sufficient. Even though the chronaxies of neurons residing in the DMFC and FEF were similar (ranging from 0.1 to 0.24 ms) significantly higher currents were required to evoke saccades from the DMFC than FEF. Thus the stimulation parameters that are optimal for evoking saccades from the DMFC differ from those that are optimal for evoking saccades from the FEF. Although the excitability of neurons in the DMFC and FEF are similar (due to similar chronaxies), we suggest that the density of saccade-relevant neurons is higher in the FEF than in the DMFC.Item Open Access Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk.(Proc Biol Sci, 2015-12-07) Bedore, Christine N; Kajiura, Stephen M; Johnsen, SönkeCephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.Item Open Access Frontal eye field neurons orthodromically activated from the superior colliculus.(J Neurophysiol, 1998-12) Sommer, MA; Wurtz, RHFrontal eye field neurons orthodromically activated from the superior colliculus. J. Neurophysiol. 80: 3331-3333, 1998. Anatomical studies have shown that the frontal eye field (FEF) and superior colliculus (SC) of monkeys are reciprocally connected, and a physiological study described the signals sent from the FEF to the SC. Nothing is known, however, about the signals sent from the SC to the FEF. We physiologically identified and characterized FEF neurons that are likely to receive input from the SC. Fifty-two FEF neurons were found that were orthodromically activated by electrical stimulation of the intermediate or deeper layers of the SC. All the neurons that we tested (n = 34) discharged in response to visual stimulation. One-half also discharged when saccadic eye movements were made. This provides the first direct evidence that the ascending pathway from SC to FEF might carry visual- and saccade-related signals. Our findings support a hypothesis that the SC and the FEF interact bidirectionally during the events leading up to saccade generation.Item Open Access High-speed label-free functional photoacoustic microscopy of mouse brain in action.(Nat Methods, 2015-05) Yao, Junjie; Wang, Lidai; Yang, Joon-Mo; Maslov, Konstantin I; Wong, Terence TW; Li, Lei; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong VWe present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.Item Open Access Noninvasive Detection of Motor-Evoked Potentials in Response to Brain Stimulation Below the Noise Floor-How Weak Can a Stimulus Be and Still Stimulate.(Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2018-07) Goetz, SM; Li, Z; Peterchev, AVMotor-evoked potentials (MEP) are one of the most important responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. The understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smallest responses, e.g., from single motor units, but available detection and quantization methods are rather simple and suffer from a large noise floor. The paper introduces a more sophisticated matched-filter detection method that increases the detection sensitivity and shows that activation occurs well below the conventional detection level. In consequence, also conventional threshold definitions, e.g., as 50 μV median response amplitude, turn out to be substantially higher than the point at which first detectable responses occur. The presented method uses a matched-filter approach for improved sensitivity and generates the filter through iterative learning from the presented data. In contrast to conventional peak-to-peak measures, the presented method has a higher signal-to-noise ratio (≥14 dB). For responses that are reliably detected by conventional detection, the new approach is fully compatible and provides the same results but extends the dynamic range below the conventional noise floor. The underlying method is applicable to a wide range of well-timed biosignals and evoked potentials, such as in electroencephalography.Item Open Access The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping.(World Neurosurg, 2014-01) Hemmer, Laura B; Zeeni, Carine; Bebawy, John F; Bendok, Bernard R; Cotton, Mathew A; Shah, Neil B; Gupta, Dhanesh K; Koht, AntounOBJECTIVE: To review the experience at a single institution with motor evoked potential (MEP) monitoring during intracranial aneurysm surgery to determine the incidence of unacceptable movement. METHODS: Neurophysiology event logs and anesthetic records from 220 craniotomies for aneurysm clipping were reviewed for unacceptable patient movement or reason for cessation of MEPs. Muscle relaxants were not given after intubation. Transcranial MEPs were recorded from bilateral abductor hallucis and abductor pollicis muscles. MEP stimulus intensity was increased up to 500 V until evoked potential responses were detectable. RESULTS: Out of 220 patients, 7 (3.2%) exhibited unacceptable movement with MEP stimulation-2 had nociception-induced movement and 5 had excessive field movement. In all but one case, MEP monitoring could be resumed, yielding a 99.5% monitoring rate. CONCLUSIONS: With the anesthetic and monitoring regimen, the authors were able to record MEPs of the upper and lower extremities in all patients and found only 3.2% demonstrated unacceptable movement. With a suitable anesthetic technique, MEP monitoring in the upper and lower extremities appears to be feasible in most patients and should not be withheld because of concern for movement during neurovascular surgery.Item Open Access What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.(J Neurophysiol, 2004-03) Sommer, Marc A; Wurtz, Robert HNeuronal processing in cerebral cortex and signal transmission from cortex to brain stem have been studied extensively, but little is known about the numerous feedback pathways that ascend from brain stem to cortex. In this study, we characterized the signals conveyed through an ascending pathway coursing from the superior colliculus (SC) to the frontal eye field (FEF) via mediodorsal thalamus (MD). Using antidromic and orthodromic stimulation, we identified SC source neurons, MD relay neurons, and FEF recipient neurons of the pathway in Macaca mulatta. The monkeys performed oculomotor tasks, including delayed-saccade tasks, that permitted analysis of signals such as visual activity, delay activity, and presaccadic activity. We found that the SC sends all of these signals into the pathway with no output selectivity, i.e., the signals leaving the SC resembled those found generally within the SC. Visual activity arrived in FEF too late to contribute to short-latency visual responses there, and delay activity was largely filtered out in MD. Presaccadic activity, however, seemed critical because it traveled essentially unchanged from SC to FEF. Signal transmission in the pathway was fast ( approximately 2 ms from SC to FEF) and topographically organized (SC neurons drove MD and FEF neurons having similarly eccentric visual and movement fields). Our analysis of identified neurons in one pathway from brain stem to frontal cortex thus demonstrates that multiple signals are sent from SC to FEF with presaccadic activity being prominent. We hypothesize that a major signal conveyed by the pathway is corollary discharge information about the vector of impending saccades.