Browsing by Subject "Electrodes, Implanted"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access A Refined Neuronal Population Measure of Visual Attention.(PloS one, 2015-01) Mayo, J Patrick; Cohen, Marlene R; Maunsell, John HRNeurophysiological studies of cognitive mechanisms such as visual attention typically ignore trial-by-trial variability and instead report mean differences averaged across many trials. Advances in electrophysiology allow for the simultaneous recording of small populations of neurons, which may obviate the need for averaging activity over trials. We recently introduced a method called the attention axis that uses multi-electrode recordings to provide estimates of attentional state of behaving monkeys on individual trials. Here, we refine this method to eliminate problems that can cause bias in estimates of attentional state in certain scenarios. We demonstrate the sources of these problems using simulations and propose an amendment to the previous formulation that provides superior performance in trial-by-trial assessments of attentional state.Item Open Access A screw microdrive for adjustable chronic unit recording in monkeys.(J Neurosci Methods, 1998-06-01) Nichols, AM; Ruffner, TW; Sommer, MA; Wurtz, RHA screw microdrive is described that attaches to the grid system used for recording single neurons from brains of awake behaving monkeys. Multiple screwdrives can be mounted on a grid over a single cranial opening. This method allows many electrodes to be implanted chronically in the brain and adjusted as needed to maintain isolation. rights reserved.Item Open Access Building an organic computing device with multiple interconnected brains.(Scientific reports, 2015-07-09) Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel ALRecently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers.Item Open Access Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.(Journal of neural engineering, 2015-08) Howell, Bryan; Huynh, Brian; Grill, Warren MObjective
Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS.Approach
We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo.Main results
Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation.Significance
Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.Item Open Access Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2016-05) Pages, Daniel S; Ross, Deborah A; Puñal, Vanessa M; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M; Wilson, Blake S; Groh, Jennifer MUnderstanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 μA, 100-300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts.Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants.Item Open Access Evaluation and resolution of many challenges of neural spike sorting: a new sorter.(Journal of neurophysiology, 2021-12) Hall, Nathan J; Herzfeld, David J; Lisberger, Stephen GWe evaluate existing spike sorters and present a new one that resolves many sorting challenges. The new sorter, called "full binary pursuit" or FBP, comprises multiple steps. First, it thresholds and clusters to identify the waveforms of all unique neurons in the recording. Second, it uses greedy binary pursuit to optimally assign all the spike events in the original voltages to separable neurons. Third, it resolves spike events that are described more accurately as the superposition of spikes from two other neurons. Fourth, it resolves situations where the recorded neurons drift in amplitude or across electrode contacts during a long recording session. Comparison with other sorters on ground-truth data sets reveals many of the failure modes of spike sorting. We examine overall spike sorter performance in ground-truth data sets and suggest postsorting analyses that can improve the veracity of neural analyses by minimizing the intrusion of failure modes into analysis and interpretation of neural data. Our analysis reveals the tradeoff between the number of channels a sorter can process, speed of sorting, and some of the failure modes of spike sorting. FBP works best on data from 32 channels or fewer. It trades speed and number of channels for avoidance of specific failure modes that would be challenges for some use cases. We conclude that all spike sorting algorithms studied have advantages and shortcomings, and the appropriate use of a spike sorter requires a detailed assessment of the data being sorted and the experimental goals for analyses.NEW & NOTEWORTHY Electrophysiological recordings from multiple neurons across multiple channels pose great difficulty for spike sorting of single neurons. We propose methods that improve the ability to determine the number of individual neurons present in a recording and resolve near-simultaneous spike events from single neurons. We use ground-truth data sets to demonstrate the pros and cons of several current sorting algorithms and suggest strategies for determining the accuracy of spike sorting when ground-truth data are not available.Item Open Access Frontal eye field neurons orthodromically activated from the superior colliculus.(J Neurophysiol, 1998-12) Sommer, MA; Wurtz, RHFrontal eye field neurons orthodromically activated from the superior colliculus. J. Neurophysiol. 80: 3331-3333, 1998. Anatomical studies have shown that the frontal eye field (FEF) and superior colliculus (SC) of monkeys are reciprocally connected, and a physiological study described the signals sent from the FEF to the SC. Nothing is known, however, about the signals sent from the SC to the FEF. We physiologically identified and characterized FEF neurons that are likely to receive input from the SC. Fifty-two FEF neurons were found that were orthodromically activated by electrical stimulation of the intermediate or deeper layers of the SC. All the neurons that we tested (n = 34) discharged in response to visual stimulation. One-half also discharged when saccadic eye movements were made. This provides the first direct evidence that the ascending pathway from SC to FEF might carry visual- and saccade-related signals. Our findings support a hypothesis that the SC and the FEF interact bidirectionally during the events leading up to saccade generation.Item Open Access Multielectrode evidence for spreading activity across the superior colliculus movement map.(J Neurophysiol, 2000-07) Port, NL; Sommer, MA; Wurtz, RHThe monkey superior colliculus (SC) has maps for both visual input and movement output in the superficial and intermediate layers, respectively, and activity on these maps is generally related to visual stimuli only in one part of the visual field and/or to a restricted range of saccadic eye movements to those stimuli. For some neurons within these maps, however, activity has been reported to spread from the caudal SC to the rostral SC during the course of a saccade. This spread of activity was inferred from averages of recordings at different sites on the SC movement map during saccades of different amplitudes and even in different monkeys. In the present experiments, SC activity was recorded simultaneously in pairs of neurons to observe the spread of activity during individual saccades. Two electrodes were positioned along the rostral-caudal axis of the SC with one being more caudal than the other, and 60 neuron pairs whose movement fields were large enough to see a spread of activity were studied. During individual saccades, the relative time of discharge of the two neurons was compared using 1) the time difference between peak discharge of the two neurons, 2) the difference between the "median activation time" of the two neurons, and 3) the shift required to align the two discharge patterns using cross-correlation. All three analysis methods gave comparable results. Many pairs of neurons were activated in sequence during saccade generation, and the order of activation was most frequently caudal to rostral. Such a sequence of activation was not observed in every neuron pair, but over the sample of neuron pairs studied, the spread was statistically significant. When we compared the time of neuronal activity to the time of saccade onset, we found that the caudal neuronal activity was more likely to be before the saccade, whereas the rostral neuronal activity was more likely to be during the saccade. These results demonstrate that when individual pairs of neurons are examined during single saccades there is evidence of a caudal to rostral spread of activity within the monkey SC, and they confirm the previous inferences of a spread of activity drawn from observations on averaged neuronal activity during multiple saccades. The functional contribution of this spread of activity remains to be determined.Item Open Access Single neurons may encode simultaneous stimuli by switching between activity patterns.(Nature communications, 2018-07-13) Caruso, Valeria C; Mohl, Jeff T; Glynn, Christopher; Lee, Jungah; Willett, Shawn M; Zaman, Azeem; Ebihara, Akinori F; Estrada, Rolando; Freiwald, Winrich A; Tokdar, Surya T; Groh, Jennifer MHow the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.Item Open Access Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System.(IEEE transactions on bio-medical engineering, 2018-05) Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, MaysamThe purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.