Browsing by Subject "Electrophoresis, Polyacrylamide Gel"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.(The Journal of cell biology, 1981-04) Skene, JH; Willard, MIn an effort to determine whether the "growth state" and the "mature state" of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the "GAP hypothesis" that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a "synaptogenic state" characterized by the transport of GAP-23 but not GAP-43, and an "axon elongation state" requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.Item Open Access Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells.(Bioorganic & medicinal chemistry letters, 2011-09) Hubbard, Sarah C; Boyce, Michael; McVaugh, Cheryl T; Peehl, Donna M; Bertozzi, Carolyn RMost clinically approved biomarkers of cancer are glycoproteins, and those residing on the cell surface are of particular interest in biotherapeutics. We report a method for selective labeling, affinity enrichment, and identification of cell-surface glycoproteins. PC-3 cells and primary human prostate cancer tissue were treated with peracetylated N-azidoacetylgalactosamine, resulting in metabolic labeling of cell surface glycans with the azidosugar. We used mass spectrometry to identify over 70 cell surface glycoproteins and biochemically validated CD146 and integrin beta-4, both of which are known to promote metastatic behavior. These results establish cell-surface glycoproteomics as an effective technique for discovery of cancer biomarkers.Item Open Access Chain stiffness of elastin-like polypeptides.(Biomacromolecules, 2010-11-08) Fluegel, Sabine; Fischer, Karl; McDaniel, Jonathan R; Chilkoti, Ashutosh; Schmidt, ManfredItem Open Access Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells.(The Journal of cell biology, 1981-04) Skene, JH; Willard, MIn an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane-associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same period. Among these more slowly transported polypeptides, five were observed whose labeling increased much more than the average. Three of these five polypeptides resemble actin and alpha- and beta-tubulin in their electrophoretic properties.Item Open Access Cooperativity between the Phosphorylation of Thr(95) and Ser(77) of NHERF-1 in the Hormonal Regulation of Renal Phosphate Transport(JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2013-01-06) Weinman, Edward J; Steplock, Deborah; Zhang, Yinghua; Biswas, Rajatsubhra; Bloch, Robert J; Shenolikar, ShirishThe phosphorylation of the sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) plays a key role in the regulation of renal phosphate transport by parathyroid hormone (PTH) and dopamine. Ser(77) in the first PDZ domain of NHERF-1 is a downstream target of both hormones. The current experiments explore the role of Thr(95), another phosphate acceptor site in the PDZ I domain, on hormone-mediated regulation of phosphate transport in the proximal tubule of the kidney. The substitution of alanine for threonine at position 95 (T95A) significantly decreased the rate and extent of in vitro phosphorylation of Ser(77) by PKC. In NHERF-1-null proximal tubule cells, neither PTH nor dopamine inhibited sodium-dependent phosphate transport. Infection of the cells with adenovirus expressing full-length WT GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of both PTH and dopamine. Infection with full-length NHERF-1 containing a T95A mutation, however, increased basal phosphate transport but not the responsiveness to either hormone. As determined by surface plasmon resonance, the substitution of serine for aspartic acid (S77D) in the PDZ I domain decreased the binding affinity to the sodium-dependent phosphate transporter 2a (Npt2a) as compared with WT PDZ I, but a T95D mutation had no effect on binding. Finally, cellular studies indicated that both PTH and dopamine treatment increased the phosphorylation of Thr(95). These studies indicate a remarkable cooperativity between the phosphorylation of Thr(95) and Ser(77) of NHERF-1 in the hormonal regulation of renal phosphate transport. The phosphorylation of Thr(95) facilitates the phosphorylation of Ser(77). This, in turn, results in the dissociation of NHERF-1 from Npt2a and a decrease in phosphate transport in renal proximal tubule cells.Item Open Access Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1).(PloS one, 2011-01) Agrawal, Nitish; Leaman, Daniel P; Rowcliffe, Eric; Kinkead, Heather; Nohria, Raman; Akagi, Junya; Bauer, Katherine; Du, Sean X; Whalen, Robert G; Burton, Dennis R; Zwick, Michael BThe HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T(90) values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T(90) (p = 0.029), though two 'outliers' were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1(ADA) was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1(JR-CSF). Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.Item Restricted Magnetic resonance water proton relaxation in protein solutions and tissue: T(1rho) dispersion characterization.(PLoS One, 2010-01-05) Chen, Enn-Ling; Kim, Raymond JBACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).Item Open Access Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response.(Mol Microbiol, 2007-01) McBroom, Amanda J; Kuehn, Meta JConditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism.