Browsing by Subject "Endocytosis"
Results Per Page
Sort Options
Item Open Access Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites.(EMBO J, 2010-09-01) Grötsch, Helga; Giblin, Jonathan P; Idrissi, Fatima-Zahra; Fernández-Golbano, Isabel-María; Collette, John R; Newpher, Thomas M; Robles, Virginia; Lemmon, Sandra K; Geli, María-IsabelMyosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains. Myosins-I are known to participate in actin-dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin-I Myo5 and its C(ext). The TH1 domain prevented binding of the Myo5 C(ext) to the yeast WIP homologue Vrp1, Myo5 C(ext)-induced actin polymerization and recruitment of the Myo5 C(ext) to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the C(ext). Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin-I lifespan at endocytic sites and activated Myo5-induced actin polymerization.Item Open Access Clathrin is important for normal actin dynamics and progression of Sla2p-containing patches during endocytosis in yeast.(Traffic (Copenhagen, Denmark), 2006-05) Newpher, Thomas M; Lemmon, Sandra KClathrin is a major vesicle coat protein involved in receptor-mediated endocytosis. In yeast and higher eukaryotes, clathrin is recruited to the plasma membrane during the early stage of endocytosis along with clathrin-associated adaptors. As coated pits undergo maturation, a burst of actin polymerization accompanies and helps drive vesicle internalization. Here, we investigate the dynamics of clathrin relative to the early endocytic patch protein Sla2p. We find that clathrin is recruited to the cortex prior to Sla2p. In the absence of clathrin, normal numbers of Sla2p patches form, but many do not internalize or are dramatically delayed in completion of endocytosis. Patches that do internalize receive Sla1p late, which is followed by Abp1, which appears near the end of Sla2p lifetime. In addition, clathrin mutants develop actin comet tails, suggesting an important function in actin patch organization/dynamics. Similar to its mammalian counterparts, the light chain (LC) subunit of yeast clathrin interacts directly with the coiled-coil domain of Sla2p. A mutant of Sla2p that no longer interacts with LC (sla2Delta376-573) results in delayed progression of endocytic patches and aberrant actin dynamics. These data demonstrate an important role for clathrin in organization and progression of early endocytic patches to the late stages of endocytosis.Item Open Access Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference.(Proc Natl Acad Sci U S A, 2003-02-18) Ahn, Seungkirl; Nelson, Christopher D; Garrison, Tiffany Runyan; Miller, William E; Lefkowitz, Robert JBeta-arrestins bind to activated G protein-coupled receptor kinase-phosphorylated receptors, which leads to their desensitization with respect to G proteins, internalization via clathrin-coated pits, and signaling via a growing list of "scaffolded" pathways. To facilitate the discovery of novel adaptor and signaling roles of beta-arrestins, we have developed and validated a generally applicable interfering RNA approach for selectively suppressing beta-arrestins 1 or 2 expression by up to 95%. Beta-arrestin depletion in HEK293 cells leads to enhanced cAMP generation in response to beta(2)-adrenergic receptor stimulation, markedly reduced beta(2)-adrenergic receptor and angiotensin II receptor internalization and impaired activation of the MAP kinases ERK 1 and 2 by angiotensin II. This approach should allow discovery of novel signaling and regulatory roles for the beta-arrestins in many seven-membrane-spanning receptor systems.Item Open Access HPIP and RUFY3 are noncanonical guanine nucleotide exchange factors of Rab5 to regulate endocytosis-coupled focal adhesion turnover.(The Journal of biological chemistry, 2023-11) Khumukcham, Saratchandra Singh; Penugurti, Vasudevarao; Bugide, Suresh; Dwivedi, Anju; Kumari, Anita; Kesavan, PS; Kalali, Sruchytha; Mishra, Yasaswi Gayatri; Ramesh, Vakkalagadda A; Nagarajaram, Hampapathalu A; Mazumder, Aprotim; Manavathi, BramanandamWhile the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-β1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.Item Open Access In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast.(Developmental cell, 2005-07) Newpher, Thomas M; Smith, Robin P; Lemmon, Vance; Lemmon, Sandra KClathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.Item Open Access Mechanisms of Molecular Chaperone Surface Binding and Endocytosis: Insights into the Molecular Basis for GRP94 Immune Function(2010) Jockheck-Clark, Angela RobertaExtracellular GRP94 can elicit both innate and adaptive immune responses by interacting with endocytic and signaling receptors on professional antigen presenting cells (pAPCs). CD91 was the first receptor proposed to facilitate GRP94-mediated immune responses. Using a GRP94 affinity matrix, a CD91 fragment was isolated from the detergent-solubilized membranes of a pAPC cell line. It was then demonstrated that CD91 ligands could inhibit GRP94-mediated peptide cross-presentation, suggesting that CD91 played a critical role in this process. While these studies implied that CD91 could function as a GRP94 endocytic receptor, later works suggested that CD91 may not recognize GRP94 at the cell surface. These opposing observations have lead to a significant controversy surrounding the identity of CD91 as an endocytic receptor for GRP94. Because the ability of CD91 to directly mediate GRP94 surface binding and uptake has not been established, the studies included in this dissertation have focused on evaluating the ability of CD91 to facilitate three processes that are necessary for GRP94-mediated peptide cross-presentation: surface binding, internalization, and processing.
These studies utilized a recombinantly-expressed N-terminal domain of GRP94 (GRP94.NTD), which was previously shown to have nearly identical biological activity to full length GRP94. The ability of CD91 to directly bind and internalize GRP94.NTD was examined using murine embryonic fibroblast (MEF) cell lines whose expression of CD91 was either reduced via siRNA, or eliminated by genetic disruption of the CD91 locus. Binding competition experiments were also conducted. Together, these studies reveal that CD91 does not directly interact with GRP94 at the cell surface. The ability of CD91 to directly facilitate GRP94 internalization was examined using various internalization and internalization competition assays. These studies demonstrated that GRP94.NTD and the CD91 ligand RAP were internalized through spatially and kinetically distinct pathways, that CD91 was not necessary for GRP94.NTD internalization, and that RAP did not inhibit GRP94 endocytosis. Together, these studies strongly suggest that CD91 does not directly facilitate GRP94 internalization. When these studies were extended to DC2.4 mouse dendritic cells, the CD91 ligand RAP reduced GRP94.NTD internalization/process by ~15%. This suggests that CD91 may indirectly facilitate GRP94 internalization in pAPC cell lines. Lastly, cross-presentation studies were utilized to examine the ability of various CD91 ligands to influence GRP94.NTD-mediated peptide cross-presentation through a post-uptake mechanism using the DC2.4/OT-1 system. Although it was discovered that DC2.4 cells can internalize and process GRP94.NTD/peptide complexes through fluid-phase endocytosis, CD91 ligands did not significantly inhibit GRP94-mediated peptide cross-presentation by DC2.4 cells. These studies demonstrate that CD91 does not play a primary role in GRP94-mediated peptide cross-presentation.
In the course of these studies, cell surface heparan sulfate proteoglycans (HSPGs) were identified as novel cell surface binding sites for GRP94.NTD on MEF cells. This conclusion was established using three distinct experimental approaches. GRP94.NTD surface binding was significantly decreased following heparin pre-treatment, following incubation with the sulfation inhibitor sodium chlorate, and following digestion with extracellular heparinase II. Conversely, these treatments did not significantly influence GRP94.NTD binding to RAW264.7 mouse macrophage-like cells. This suggested that GRP94.NTD-HSPG cell surface interactions may require the expression of a specific type of cell surface HSPG that is not expressed by RAW264.7 cells. However, additional studies strongly suggested that GRP94.NTD-HSPG cell surface interactions were mediated by the heparan sulfate-containing side chains rather than the presence of a specific cell surface HSPG core protein.
This dissertation focuses on the critical re-examination of CD91 functions in GRP94 surface binding, uptake, and cross-presentation. Together, these results clarify conflicting data on CD91 function in GRP94 surface binding and endocytosis. This dissertation also describes the identification of cell surface HSPGs as GRP94 binding sites on MEF cells. These studies extend the diversity of surface receptors that recognize of GRP94, and suggest that cell surface HSPG-dependent interactions may contribute to the biology of GRP94-elicited immune responses.
Item Open Access Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells.(PLoS One, 2011) Wu, Mina; Yuan, FanElectric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.Item Open Access Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity.(Proc Natl Acad Sci U S A, 2000-02-01) Claing, A; Perry, SJ; Achiriloaie, M; Walker, JK; Albanesi, JP; Lefkowitz, RJ; Premont, RTRecently, we identified a GTPase-activating protein for the ADP ribosylation factor family of small GTP-binding proteins that we call GIT1. This protein initially was identified as an interacting partner for the G protein-coupled receptor kinases, and its overexpression was found to affect signaling and internalization of the prototypical beta(2)-adrenergic receptor. Here, we report that GIT1 overexpression regulates internalization of numerous, but not all, G protein-coupled receptors. The specificity of the GIT1 effect is not related to the type of G protein to which a receptor couples, but rather to the endocytic route it uses. GIT1 only affects the function of G protein-coupled receptors that are internalized through the clathrin-coated pit pathway in a beta-arrestin- and dynamin-sensitive manner. Furthermore, the GIT1 effect is not limited to G protein-coupled receptors because overexpression of this protein also affects internalization of the epidermal growth factor receptor. However, constitutive agonist-independent internalization is not regulated by GIT1, because transferrin uptake is not affected by GIT1 overexpression. Thus, GIT1 is a protein involved in regulating the function of signaling receptors internalized through the clathrin pathway and can be used as a diagnostic tool for defining the endocytic pathway of a receptor.Item Open Access New Insights into GPCR–Transducer Coupling(2018) Cahill, Thomas J.β-arrestins (βarrs) interact with G protein-coupled receptors (GPCRs) to desensitize G protein signaling, initiate signaling on their own, and mediate receptor endocytosis. Using a panel of GPCRs believed to couple differently to βarrs we demonstrate how distinct conformations of GPCR–βarr complexes are specialized to perform different subsets of these cellular functions. Our results thus provide a new signaling paradigm for the understanding of GPCRs, whereby a specific GPCR–βarr conformation mediates receptor desensitization, while another drives internalization and some forms of signaling.
In addition, some GPCRs activate G proteins from within internalized cellular compartments resulting in sustained signaling. We used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor “mega-complexes” composed of a single GPCR, βarr, and G protein. EM of purified ‘megaplexes’ reveals that a single receptor binds simultaneously through its core region with G protein and with βarr in the tail conformation. Thus, the two GPCR–βarr conformations carry out distinct cellular functions.
Item Open Access Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation.(2010) Jin, CongIn recent years, the incidence of allergic asthma as well as the severity of disease has rapidly increased worldwide. Numerous epidemiological studies have related the exacerbation of allergic asthma with exposure to increased ambient particles from air pollutants. However, the mechanism by which particulate allergens (pAg) exacerbate allergic asthma remains undefined. To evaluate this, we modeled environmental pAg induced allergic asthma by exposing mice to polystyrene beads coated with natural allergen extracts. Compared to equal amounts of soluble allergen extracts (sAg), pAg triggered markedly enhanced airway hyper-responsiveness and pulmonary eosinophilia in allergen sensitized mice. The cellular basis for this effect was determined to be mast cells (MCs), as both airway allergic responses were attenuated in MC deficient KitWsh/KitW-sh mice compared to MC reconstituted KitW-sh/KitW-sh mice. The divergent responses of MCs to pAg versus sAg were due to differences in the termination rate of IgE/FcεRI initiated signaling. Following ligation of sAg, IgE/FcεRI rapidly shuttled into a degradative endosome/lysosome pathway. However, following ligation by pAg, IgE/FcεRI migrated into lipid raft enriched compartments and subsequently failed to follow a degradative pathway, which resulted in a prolonged signaling and heightened synthesis of proinflammatory mediators. These observations highlight the overlooked contributions of the particulate nature of allergens and mast cell endocytic circuitry to the aggravation of allergic asthma.Item Open Access Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4.(Nature, 2013-05) Benner, Eric J; Luciano, Dominic; Jo, Rebecca; Abdi, Khadar; Paez-Gonzalez, Patricia; Sheng, Huaxin; Warner, David S; Liu, Chunlei; Eroglu, Cagla; Kuo, Chay TPostnatal/adult neural stem cells (NSCs) within the rodent subventricular zone (SVZ; also called subependymal zone) generate doublecortin (Dcx)(+) neuroblasts that migrate and integrate into olfactory bulb circuitry. Continuous production of neuroblasts is controlled by the SVZ microenvironmental niche. It is generally thought that enhancing the neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear whether there are conditions that favour astrogenesis over neurogenesis in the SVZ niche, and whether astrocytes produced there have different properties compared with astrocytes produced elsewhere in the brain. Here we show in mice that SVZ-generated astrocytes express high levels of thrombospondin 4 (Thbs4), a secreted homopentameric glycoprotein, in contrast to cortical astrocytes, which express low levels of Thbs4. We found that localized photothrombotic/ischaemic cortical injury initiates a marked increase in Thbs4(hi) astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-creER(tm)4 lineage tracing demonstrated that it is these SVZ-generated Thbs4(hi) astrocytes, and not Dcx(+) neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production. Consequently, Thbs4 homozygous knockout mice (Thbs4(KO/KO)) showed severe defects in cortical-injury-induced SVZ astrogenesis, instead producing cells expressing Dcx migrating from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular haemorrhage into the brain parenchyma of Thbs4(KO/KO) mice. Taken together, these findings have important implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members have important roles.Item Open Access Regulation of spine structural plasticity by Arc/Arg3.1.(Seminars in cell & developmental biology, 2018-05) Newpher, Thomas M; Harris, Scott; Pringle, Jasmine; Hamilton, Colleen; Soderling, ScottDendritic spines are actin-rich, postsynaptic protrusions that contact presynaptic terminals to form excitatory chemical synapses. These synaptic contacts are widely believed to be the sites of memory formation and information storage, and changes in spine shape are thought to underlie several forms of learning-related plasticity. Both membrane trafficking pathways and the actin cytoskeleton drive activity-dependent structural and functional changes in dendritic spines. A key molecular player in regulating these processes is the activity-regulated cytoskeleton-associated protein (Arc), a protein that has diverse roles in expression of synaptic plasticity. In this review, we highlight important findings that have shaped our understanding of Arc's functions in structural and functional plasticity, as well as Arc's contributions to memory consolidation and disease.Item Open Access Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors.(Proc Natl Acad Sci U S A, 2000-02-15) Pierce, KL; Maudsley, S; Daaka, Y; Luttrell, LM; Lefkowitz, RJActing through a number of distinct pathways, many G protein-coupled receptors (GPCRs) activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. Recently, it has been shown that in some cases, clathrin-mediated endocytosis is required for GPCR activation of the ERK/MAPK cascade, whereas in others it is not. Accordingly, we compared ERK activation mediated by a GPCR that does not undergo agonist-stimulated endocytosis, the alpha(2A) adrenergic receptor (alpha(2A) AR), with ERK activation mediated by the beta(2) adrenergic receptor (beta(2) AR), which is endocytosed. Surprisingly, we found that in COS-7 cells, ERK activation by the alpha(2A) AR, like that mediated by both the beta(2) AR and the epidermal growth factor receptor (EGFR), is sensitive to mechanistically distinct inhibitors of clathrin-mediated endocytosis, including monodansylcadaverine, a mutant dynamin I, and a mutant beta-arrestin 1. Moreover, we determined that, as has been shown for many other GPCRs, both alpha(2A) and beta(2) AR-mediated ERK activation involves transactivation of the EGFR. Using confocal immunofluorescence microscopy, we found that stimulation of the beta(2) AR, the alpha(2A) AR, or the EGFR each results in internalization of a green fluorescent protein-tagged EGFR. Although beta(2) AR stimulation leads to redistribution of both the beta(2) AR and EGFR, activation of the alpha(2A) AR leads to redistribution of the EGFR but the alpha(2A) AR remains on the plasma membrane. These findings separate GPCR endocytosis from the requirement for clathrin-mediated endocytosis in EGFR transactivation-mediated ERK activation and suggest that it is the receptor tyrosine kinase or another downstream effector that must engage the endocytic machinery.Item Open Access Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis.(J Cell Sci, 2012-10-15) Chi, Richard J; Torres, Onaidy T; Segarra, Verónica A; Lansley, Tanya; Chang, Ji Suk; Newpher, Thomas M; Lemmon, Sandra KPhosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1Δ2, a mutation causing impaired PP1 binding. scd5-PP1Δ2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1Δ2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1Δ2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1ΔSR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1ΔSR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis.Item Open Access Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors.(PloS one, 2019-01-09) Yu, Xin; Dobrikov, Mikhail; Keir, Stephen T; Gromeier, Matthias; Pastan, Ira H; Reisfeld, Ralph; Bigner, Darell D; Chandramohan, VidyalakshmiStandard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors.Item Open Access Trafficking of G protein-coupled receptors.(Circ Res, 2006-09-15) Drake, Matthew T; Shenoy, Sudha K; Lefkowitz, Robert JG protein-coupled receptors (GPCRs) play an integral role in the signal transduction of an enormous array of biological phenomena, thereby serving to modulate at a molecular level almost all components of human biology. This role is nowhere more evident than in cardiovascular biology, where GPCRs regulate such core measures of cardiovascular function as heart rate, contractility, and vascular tone. GPCR/ligand interaction initiates signal transduction cascades, and requires the presence of the receptor at the plasma membrane. Plasma membrane localization is in turn a function of the delivery of a receptor to and removal from the cell surface, a concept defined most broadly as receptor trafficking. This review illuminates our current view of GPCR trafficking, particularly within the cardiovascular system, as well as highlights the recent and provocative finding that components of the GPCR trafficking machinery can facilitate GPCR signaling independent of G protein activation.