Browsing by Subject "Endoplasmic Reticulum Stress"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes.(Molecules (Basel, Switzerland), 2021-10) Ali, Tomader; Lei, Xiaoyong; Barbour, Suzanne E; Koizumi, Akio; Chalfant, Charles E; Ramanadham, SasankaType 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student's t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages-the initiators of autoimmune responses leading to T1D-is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.Item Open Access Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration.(The Journal of biological chemistry, 2018-01) Goh, Catherine Wenhui; Lee, Irene Chengjie; Sundaram, Jeyapriya Rajameenakshi; George, Simi Elizabeth; Yusoff, Permeen; Brush, Matthew Hayden; Sze, Newman Siu Kwan; Shenolikar, ShirishOxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.Item Open Access Dangerous liaisons: flirtations between oncogenic BRAF and GRP78 in drug-resistant melanomas.(The Journal of clinical investigation, 2014-03) Shenolikar, ShirishBRAF mutations in aggressive melanomas result in kinase activation. BRAF inhibitors reduce BRAF(V600E) tumors, but rapid resistance follows. In this issue of the JCI, Ma and colleagues report that vemurafenib activates ER stress and autophagy in BRAF(V600E) melanoma cells, through sequestration of the ER chaperone GRP78 by the mutant BRAF and subsequent PERK activation. In preclinical studies, treating vemurafenib-resistant melanoma with a combination of vemurafenib and an autophagy inhibitor reduced tumor load. Further work is needed to establish clinical relevance of this resistance mechanism and demonstrate efficacy of autophagy and kinase inhibitor combinations in melanoma treatment.Item Open Access Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.(PLoS Genet, 2015-11) Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati HLevels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.Item Open Access PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis.(Stroke, 2020-05) Wang, Ya-Chao; Li, Xuan; Shen, Yuntian; Lyu, Jingjun; Sheng, Huaxin; Paschen, Wulf; Yang, WeiBackground and Purpose- Ischemic stroke impairs endoplasmic reticulum (ER) function, causes ER stress, and activates the unfolded protein response. The unfolded protein response consists of 3 branches controlled by ER stress sensor proteins, which include PERK (protein kinase RNA-like ER kinase). Activated PERK phosphorylates eIF2α (eukaryotic initiation factor 2 alpha), resulting in inhibition of global protein synthesis. Here, we aimed to clarify the role of the PERK unfolded protein response branch in stroke. Methods- Neuron-specific and tamoxifen-inducible PERK conditional knockout (cKO) mice were generated by cross-breeding Camk2a-CreERT2 with Perkf/f mice. Transient middle cerebral artery occlusion was used to induce stroke. Short- and long-term stroke outcomes were evaluated. Protein synthesis in the brain was assessed using a surface-sensing-of-translation approach. Results- After tamoxifen-induced deletion of Perk in forebrain neurons was confirmed in PERK-cKO mice, PERK-cKO and control mice were subjected to transient middle cerebral artery occlusion and 3 days or 3 weeks recovery. PERK-cKO mice had larger infarcts and worse neurological outcomes compared with control mice, suggesting that PERK-induced eIF2α phosphorylation and subsequent suppression of translation protects neurons from ischemic stress. Indeed, better stroke outcomes were observed in PERK-cKO mice that received postischemic treatment with salubrinal, which can restore the ischemia-induced increase in phosphorylated eIF2α in these mice. Finally, our data showed that post-treatment with salubrinal improved functional recovery after stroke. Conclusions- Here, we presented the first evidence that postischemic suppression of translation induced by PERK activation promotes recovery of neurological function after stroke. This confirms and further extends our previous observations that recovery of ER function impaired by ischemic stress critically contributes to stroke outcome. Therefore, future research should include strategies to improve stroke outcome by targeting unfolded protein response branches to restore protein homeostasis in neurons.Item Open Access Phosphorylation at tyrosine 262 promotes GADD34 protein turnover.(The Journal of biological chemistry, 2013-11) Zhou, Wei; Jeyaraman, Krishna; Yusoff, Permeen; Shenolikar, ShirishIn mammalian cells, metabolic and environmental stress increases the phosphorylation of the eukaryotic translational initiation factor, eIF2α, and attenuates global protein synthesis. Subsequent transcriptional activation of GADD34 assembles an eIF2α phosphatase that feeds back to restore mRNA translation. Active proteasomal degradation of GADD34 protein then reestablishes the sensitivity of cells to subsequent bouts of stress. Mass spectrometry established GADD34 phosphorylation on multiple serines, threonines, and tyrosines. Phosphorylation at tyrosine 262 enhanced the rate of the GADD34 protein turnover. Substrate-trapping studies identified TC-PTP (PTPN2) as a potential GADD34 phosphatase, recognizing phosphotyrosine 262. Reduced GADD34 protein levels in TC-PTP-null MEFs following ER stress emphasized the importance of TC-PTP in determining the cellular levels of GADD34 protein. The susceptibility of TC-PTP-null MEFs to ER stress-induced apoptosis was significantly ameliorated by ectopic expression of GADD34. The data suggested that GADD34 phosphorylation on tyrosine 262 modulates endoplasmic reticulum stress signaling and cell fate.Item Open Access Resveratrol Protects Against Hydroquinone-Induced Oxidative Threat in Retinal Pigment Epithelial Cells.(Investigative ophthalmology & visual science, 2020-04) Neal, Samantha E; Buehne, Kristen L; Besley, Nicholas A; Yang, Ping; Silinski, Peter; Hong, Jiyong; Ryde, Ian T; Meyer, Joel N; Jaffe, Glenn JPurpose
Oxidative stress in retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells.Methods
Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison.Results
RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQ-treated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation.Conclusions
Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.Item Open Access Targeting phosphorylation of eukaryotic initiation factor-2α to treat human disease.(Progress in molecular biology and translational science, 2012-01) Fullwood, Melissa J; Zhou, Wei; Shenolikar, ShirishThe unfolded protein response, also known as endoplasmic reticulum (ER) stress, has been implicated in numerous human diseases, including atherosclerosis, cancer, diabetes, and neurodegenerative disorders. Protein misfolding activates one or more of the three ER transmembrane sensors to initiate a complex network of signaling that transiently suppresses protein translation while also enhancing protein folding and proteasomal degradation of misfolded proteins to ensure full recovery from ER stress. Gene disruption studies in mice have provided critical insights into the role of specific signaling components and pathways in the differing responses of animal tissues to ER stress. These studies have emphasized an important contribution of translational repression to sustained insulin synthesis and β-cell viability in experimental models of type-2 diabetes. This has focused attention on the recently discovered small-molecule inhibitors of eIF2α phosphatases that prolong eIF2α phosphorylation to reduce cell death in several animal models of human disease. These compounds show significant cytoprotection in cellular and animal models of neurodegenerative disorders, highlighting a potential strategy for future development of drugs to treat human protein misfolding disorders.