Browsing by Subject "Endothelium"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access MEK1/2 as a Therapeutic Target in Sickle Cell Disease.(International journal of blood research and disorders, 2019-01) Zennadi, RahimaIdentification of novel therapeutic targets has improved diagnostics and treatment of many diseases. Many innovative treatment strategies have been developed based on the newly identified biomarkers and key molecules. Most of the research focused on ways to manipulate signaling pathways by activating or suppressing them, validate new therapeutic targets for treatment, and epigenetic treatment of diseases. With the identification of aberrations in multiple growth pathways, the focus then shifted to the small molecules involved in these pathways for targeted therapy. In this communication/short review, we highlight the importance of identification of abnormal activation of the mitogen-activated protein kinase (MAPK), ERK1/2, and its upstream mediator MEK1/2, in erythrocytes in patients with sickle cell disease (SCD) critical for the adhesive interactions of these cells with the endothelium, and leukocytes promoting circulatory obstruction leading to tissue ischemia and infraction. We also discuss how targeting this signaling cascade with MEK1/2 inhibitors can reverse acute vasoocclusive crises in SCD.Item Open Access Xenorecognition and costimulation of porcine endothelium-derived extracellular vesicles in initiating human porcine-specific T cell immune responses.(American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2023-07) Li, Shu; Anwar, Imran J; Canning, Aidan J; Vo-Dinh, Tuan; Kirk, Allan D; Xu, HePorcine vascular endothelial cells (PECs) form a mechanistic centerpiece of xenograft rejection. Here, we determined that resting PECs release swine leukocyte antigen class I (SLA-I) but not swine leukocyte antigen class-II DR (SLA-DR) expressing extracellular vesicles (EVs) and investigated whether these EVs proficiently initiate xenoreactive T cell responses via direct xenorecognition and costimulation. Human T cells acquired SLA-I+ EVs with or without direct contact to PECs, and these EVs colocalized with T cell receptors. Although interferon gamma-activated PECs released SLA-DR+ EVs, the binding of SLA-DR+ EVs to T cells was sparse. Human T cells demonstrated low levels of proliferation without direct contact to PECs, but marked T cell proliferation was induced following exposure to EVs. EV-induced proliferation proceeded independent of monocytes/macrophages, suggesting that EVs delivered both a T cell receptor signal and costimulation. Costimulation blockade targeting B7, CD40L, or CD11a significantly reduced T cell proliferation to PEC-derived EVs. These findings indicate that endothelial-derived EVs can directly initiate T cell-mediated immune responses, and suggest that inhibiting the release of SLA-I EVs from organ xenografts has the potential to modify the xenograft rejection. We propose a secondary-direct pathway for T cell activation via xenoantigen recognition/costimulation by endothelial-derived EVs.