Browsing by Subject "Endotoxins"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce beta-chemokines.(J Exp Med, 2010-04-12) Moody, MA; Liao, HX; Alam, SM; Scearce, RM; Plonk, MK; Kozink, DM; Drinker, MS; Zhang, R; Xia, SM; Sutherland, LL; Tomaras, GD; Giles, IP; Kappes, JC; Ochsenbauer Jambor, C; Edmonds, TG; Soares, M; Barbero, G; Forthal, DN; Landucci, G; Chang, C; King, SW; Kavlie, A; Denny, TN; Hwang, KK; Chen, PP; Thorpe, PE; Montefiori, DC; Haynes, BFTraditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to approximately 10 microg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1alpha and MIP-1beta. The release of these beta-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes.Item Open Access Beta-arrestin-2 regulates the development of allergic asthma.(J Clin Invest, 2003-08) Walker, Julia KL; Fong, Alan M; Lawson, Barbara L; Savov, Jordan D; Patel, Dhavalkumar D; Schwartz, David A; Lefkowitz, Robert JAsthma is a chronic inflammatory disorder of the airways that is coordinated by Th2 cells in both human asthmatics and animal models of allergic asthma. Migration of Th2 cells to the lung is key to their inflammatory function and is regulated in large part by chemokine receptors, members of the seven-membrane-spanning receptor family. It has been reported recently that T cells lacking beta-arrestin-2, a G protein-coupled receptor regulatory protein, demonstrate impaired migration in vitro. Here we show that allergen-sensitized mice having a targeted deletion of the beta-arrestin-2 gene do not accumulate T lymphocytes in their airways, nor do they demonstrate other physiological and inflammatory features characteristic of asthma. In contrast, the airway inflammatory response to LPS, an event not coordinated by Th2 cells, is fully functional in mice lacking beta-arrestin-2. beta-arrestin-2-deficient mice demonstrate OVA-specific IgE responses, but have defective macrophage-derived chemokine-mediated CD4+ T cell migration to the lung. This report provides the first evidence that beta-arrestin-2 is required for the manifestation of allergic asthma. Because beta-arrestin-2 regulates the development of allergic inflammation at a proximal step in the inflammatory cascade, novel therapies focused on this protein may prove useful in the treatment of asthma.Item Open Access Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers.(J Am Heart Assoc, 2014-07-10) Noveck, Robert; Stroes, Erik SG; Flaim, JoAnn D; Baker, Brenda F; Hughes, Steve; Graham, Mark J; Crooke, Rosanne M; Ridker, Paul MBACKGROUND: C-reactive protein (CRP) binds to damaged cells, activates the classical complement pathway, is elevated in multiple inflammatory conditions, and provides prognostic information on risk of future atherosclerotic events. It is controversial, however, as to whether inhibiting CRP synthesis would have any direct anti-inflammatory effects in humans. METHODS AND RESULTS: A placebo-controlled study was used to evaluate the effects of ISIS 329993 (ISIS-CRPR x) on the acute-phase response after endotoxin challenge in 30 evaluable subjects. Healthy adult males were randomly allocated to receive 6 injections over a 22-day period of placebo or active therapy with ISIS 329993 at 400- or 600-mg doses. Eligible subjects were subsequently challenged with a bolus of endotoxin (2 ng/kg). Inflammatory and hematological biomarkers were measured before and serially after the challenge. ISIS-CRPR x was well tolerated with no serious adverse events. Median CRP levels increased more than 50-fold from baseline 24 hours after endotoxin challenge in the placebo group. In contrast, the median increase in CRP levels was attenuated by 37% (400 mg) and 69% (600 mg) in subjects pretreated with ISIS-CRPR x (P<0.05 vs. placebo). All other aspects of the acute inflammatory response were similar between treatment groups. CONCLUSION: Pretreatment of subjects with ISIS-CRPR x selectively reduced the endotoxin-induced increase in CRP levels in a dose-dependent manner, without affecting other components of the acute-phase response. These data demonstrate the specificity of antisense oligonucleotides and provide an investigative tool to further define the role of CRP in human pathological conditions.Item Open Access Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review.(Journal of agricultural and food chemistry, 2005-06) Clark, BW; Phillips, TA; Coats, JRThis paper reviews the scientific literature addressing the environmental fate and nontarget effects of the Cry protein toxins from Bacillus thuringiensis (Bt), specifically resulting from their expression in transgenic crops. Published literature on analytical methodologies for the detection and quantification of the Cry proteins in environmental matrices is also reviewed, with discussion of the adequacy of the techniques for determining the persistence and mobility of the Bt proteins. In general, assessment of the nontarget effects of Bt protein toxins indicates that there is a low level of hazard to most groups of nontarget organisms, although some investigations are of limited ecological relevance. Some published reports on the persistence of the proteins in soil show short half-lives, whereas others show low-level residues lasting for many months. Improvements in analytical methods will allow a more complete understanding of the fate and significance of Bt proteins in the environment.Item Open Access Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.(PLoS One, 2008-05-07) Yu, Zengli; Li, Ping; Zhang, Mei; Hannink, Mark; Stamler, Jonathan S; Yan, ZhenOxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS) and nitric oxide (NO) determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS) in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos) and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.Item Restricted Gene expression signatures of radiation response are specific, durable and accurate in mice and humans.(PLoS One, 2008-04-02) Meadows, Sarah K; Dressman, Holly K; Muramoto, Garrett G; Himburg, Heather; Salter, Alice; Wei, ZhengZheng; Ginsburg, Geoffrey S; Chao, Nelson J; Nevins, Joseph R; Chute, John PBACKGROUND: Previous work has demonstrated the potential for peripheral blood (PB) gene expression profiling for the detection of disease or environmental exposures. METHODS AND FINDINGS: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy). A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively. CONCLUSIONS: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.Item Open Access Human endotoxin administration as an experimental model in drug development.(Clin Pharmacol Ther, 2014-10) Suffredini, AF; Noveck, RJLinking human physiology to inflammatory mechanisms discovered in vitro or in animal models is essential to determine their importance. Innate immunity underlies many of these inflammatory responses in health and disease. Bacterial endotoxin is the quintessential trigger of innate immune responses. When administered to humans, endotoxin has been an important means of demonstrating key inflammatory mechanisms in vivo. Furthermore, endotoxin challenges have provided opportunities to test the effects of novel inflammation-modifying agents in humans.Item Open Access Subacute effects of transgenic Cry1ab Bacillus thuringiensis corn litter on the isopods Trachelipus rathkii and Armadillidium nasatum.(Environmental toxicology and chemistry / SETAC, 2006-10) Clark, BW; Prihoda, KR; Coats, JRLaboratory studies were conducted to investigate the subacute effects of transgenic Cry1Ab corn leaf material containing Bacillus thuringiensis (Bt) protein on the terrestrial isopods Trachelipus rathkii and Armadillidium nasatum. Survival and growth were measured for eight weeks in isopods fed leaf material of two Bt11 corn varieties, two Monsanto 810 (Mon810) corn varieties, and the isolines of each. Total lipid and protein content of the organisms was measured to examine effects on energetic reserves. Armadillidium nasatum individuals in all treatments responded similarly. For T. rathkii, no statistically significant effect of Bt was observed, but statistical differences were observed in growth between hybrids. Protein and sugar content of the food were found to be correlated with the differences in growth for T. rathkii. Total protein content was higher in T. rathkii and A. nasatum fed material with higher protein and sugar content. A trend toward less growth in T. rathkii on Bt corn varieties versus their isolines triggered a concentration-response assay with purified Cry1Ab protein. No adverse effects of purified Bt protein were observed. These results indicate that little hazard to T. rathkii and A. nasatum from Bt corn leaf material from these hybrids exists. However, nutritional differences in corn hybrids contributed to differences in isopod growth.