Browsing by Subject "Enzyme Activation"
Now showing 1 - 20 of 24
Results Per Page
Sort Options
Item Open Access A decade of caspases.(Oncogene, 2003-11) Degterev, Alexei; Boyce, Michael; Yuan, JunyingCaspases are a family of cysteine proteases that play important roles in regulating apoptosis. A decade of research has generated a wealth of information on the signal transduction pathways mediated by caspases, the distinct functions of individual caspases and the mechanisms by which caspases mediate apoptosis and a variety of physiological and pathological processes.Item Open Access A genome-wide RNAi screen reveals multiple regulators of caspase activation.(The Journal of cell biology, 2007-11-12) Yi, Caroline H; Sogah, Dodzie K; Boyce, Michael; Degterev, Alexei; Christofferson, Dana E; Yuan, JunyingApoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.Item Open Access Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds.(Proc Natl Acad Sci U S A, 2001-02-27) Luttrell, LM; Roudabush, FL; Choy, EW; Miller, WE; Field, ME; Pierce, KL; Lefkowitz, RJUsing both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.Item Open Access beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi.(Proc Natl Acad Sci U S A, 2003-02-04) Baillie, George S; Sood, Arvind; McPhee, Ian; Gall, Irene; Perry, Stephen J; Lefkowitz, Robert J; Houslay, Miles DPhosphorylation of the beta(2) adrenoreceptor (beta(2)AR) by cAMP-activated protein kinase A (PKA) switches its predominant coupling from stimulatory guanine nucleotide regulatory protein (G(s)) to inhibitory guanine nucleotide regulatory protein (G(i)). beta-Arrestins recruit the cAMP-degrading PDE4 phosphodiesterases to the beta(2)AR, thus controlling PKA activity at the membrane. Here we investigate a role for PDE4 recruitment in regulating G protein switching by the beta(2)AR. In human embryonic kidney 293 cells overexpressing a recombinant beta(2)AR, stimulation with isoprenaline recruits beta-arrestins 1 and 2 as well as both PDE4D3 and PDE4D5 to the receptor and stimulates receptor phosphorylation by PKA. The PKA phosphorylation status of the beta(2)AR is enhanced markedly when cells are treated with the selective PDE4-inhibitor rolipram or when they are transfected with a catalytically inactive PDE4D mutant (PDE4D5-D556A) that competitively inhibits isoprenaline-stimulated recruitment of native PDE4 to the beta(2)AR. Rolipram and PDE4D5-D556A also enhance beta(2)AR-mediated activation of extracellular signal-regulated kinases ERK12. This is consistent with a switch in coupling of the receptor from G(s) to G(i), because the ERK12 activation is sensitive to both inhibitors of PKA (H89) and G(i) (pertussis toxin). In cardiac myocytes, the beta(2)AR also switches from G(s) to G(i) coupling. Treating primary cardiac myocytes with isoprenaline induces recruitment of PDE4D3 and PDE4D5 to membranes and activates ERK12. Rolipram robustly enhances this activation in a manner sensitive to both pertussis toxin and H89. Adenovirus-mediated expression of PDE4D5-D556A also potentiates ERK12 activation. Thus, receptor-stimulated beta-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the beta(2)AR in a physiological system, the cardiac myocyte.Item Open Access Calcineurin activation causes retinal ganglion cell degeneration.(Mol Vis, 2012) Qu, Juan; Matsouaka, Roland; Betensky, Rebecca A; Hyman, Bradley T; Grosskreutz, Cynthia LPURPOSE: We previously reported that calcineurin, a Ca(2+)/calmodulin-dependent serine/threonine phosphatase, is activated and proposed that it participates in retinal ganglion cell (RGC) apoptosis in two rodent ocular hypertension models. In this study, we tested whether calcineurin activation by itself, even in the absence of ocular hypertension, is sufficient to cause RGC degeneration. METHODS: We compared RGC and optic nerve morphology after adeno-associated virus serotype 2 (AAV2)-mediated transduction of RGCs with constitutively active calcineurin (CaNCA) or unactivated, wild-type calcineurin (CaNwt). Retinas and optic nerves were harvested 7-16 weeks after injection of the AAV into mouse vitreous. In flatmounted retinas, the transduced RGCs were identified with immunohistochemistry. The morphology of the RGCs was revealed by immunostaining for neurofilament SMI32 or by using GFP-M transgenic mice. A modified Sholl analysis was applied to analyze the RGC dendritic morphology. Optic nerve damage was assessed with optic nerve grading according to the Morrison standard. RESULTS: CaNwt and CaNCA were highly expressed in the injected eyes. Compared to the CaNwt-expressing RGCs, the CaNCA-expressing RGCs had smaller somas, smaller dendritic field areas, shorter total dendrite lengths, and simpler dendritic branching patterns. At 16 weeks, the CaNCA-expressing eyes had greater optic nerve damage than the CaNwt-expressing eyes. CONCLUSIONS: Calcineurin activation is sufficient to cause RGC dendritic degeneration and optic nerve damage. These data support the hypothesis that calcineurin activation is an important mediator of RGC degeneration, and are consistent with the hypothesis that calcineurin activation may contribute to RGC neurodegeneration in glaucoma.Item Open Access Costimulation of adenylyl cyclase and phospholipase C by a mutant alpha 1B-adrenergic receptor transgene promotes malignant transformation of thyroid follicular cells.(Endocrinology, 1997-01) Ledent, C; Denef, JF; Cottecchia, S; Lefkowitz, R; Dumont, J; Vassart, G; Parmentier, MProliferation of thyroid follicular cells is controlled by three intra-cellular cascades [cAMP, inositol 1,4,5-triphosphate (IP3)/Ca2+/diacylglycerol (DAG), and tyrosine kinases] that are activated by distinct extracellular signals and receptors. We had previously generated a transgenic mouse model in which the cAMP cascade was permanently stimulated in thyroid cells by an adenosine A2a receptor (Tg-A2aR model). In the present work, we have generated a transgenic model characterized by the chronic stimulation of both adenylyl cyclase and phospholipase C in thyroid follicular cells. The bovine thyroglobulin gene promoter was used to direct the expression of a constitutively active mutant of the alpha 1B adrenergic receptor, which is known to couple to both cascades in transfected cell lines. The expression of the transgene resulted, as expected, in the activation of phospholipase C and adenylyl cyclase, as demonstrated by the direct measurement of IP3 and cAMP in thyroid tissue. The phenotype resulting from this dual stimulation included growth stimulation, hyperfunction, cell degeneracy attributed to the overproduction of free radicals, and the development of malignant nodules invading the capsule, muscles, and blood vessels. Differentiated metastases were found occasionally in old animals. The development of malignant lesions was more frequent and of earlier onset than in our previous Tg-A2aR model, in which only the cAMP cascade was stimulated. These observations demonstrate that the cAMP and IP3/Ca2+/DAG cascades can cooperate in vivo toward the development of thyroid follicular cell malignancies.Item Open Access Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism.(Nature communications, 2018-01-15) Chen, Ming; Wan, Lixin; Zhang, Jiangwen; Zhang, Jinfang; Mendez, Lourdes; Clohessy, John G; Berry, Kelsey; Victor, Joshua; Yin, Qing; Zhu, Yuan; Wei, Wenyi; Pandolfi, Pier PaoloThe mitogen-activated protein kinase (MAPK) pathway is frequently aberrantly activated in advanced cancers, including metastatic prostate cancer (CaP). However, activating mutations or gene rearrangements among MAPK signaling components, such as Ras and Raf, are not always observed in cancers with hyperactivated MAPK. The mechanisms underlying MAPK activation in these cancers remain largely elusive. Here we discover that genomic amplification of the PPP1CA gene is highly enriched in metastatic human CaP. We further identify an S6K/PP1α/B-Raf signaling pathway leading to activation of MAPK signaling that is antagonized by the PML tumor suppressor. Mechanistically, we find that PP1α acts as a B-Raf activating phosphatase and that PML suppresses MAPK activation by sequestering PP1α into PML nuclear bodies, hence repressing S6K-dependent PP1α phosphorylation, 14-3-3 binding and cytoplasmic accumulation. Our findings therefore reveal a PP1α/PML molecular network that is genetically altered in human cancer towards aberrant MAPK activation, with important therapeutic implications.Item Open Access Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference.(Proc Natl Acad Sci U S A, 2003-02-18) Ahn, Seungkirl; Nelson, Christopher D; Garrison, Tiffany Runyan; Miller, William E; Lefkowitz, Robert JBeta-arrestins bind to activated G protein-coupled receptor kinase-phosphorylated receptors, which leads to their desensitization with respect to G proteins, internalization via clathrin-coated pits, and signaling via a growing list of "scaffolded" pathways. To facilitate the discovery of novel adaptor and signaling roles of beta-arrestins, we have developed and validated a generally applicable interfering RNA approach for selectively suppressing beta-arrestins 1 or 2 expression by up to 95%. Beta-arrestin depletion in HEK293 cells leads to enhanced cAMP generation in response to beta(2)-adrenergic receptor stimulation, markedly reduced beta(2)-adrenergic receptor and angiotensin II receptor internalization and impaired activation of the MAP kinases ERK 1 and 2 by angiotensin II. This approach should allow discovery of novel signaling and regulatory roles for the beta-arrestins in many seven-membrane-spanning receptor systems.Item Open Access Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras.(Proc Natl Acad Sci U S A, 1994-12-20) Koch, WJ; Hawes, BE; Allen, LF; Lefkowitz, RJStimulation of Gi-coupled receptors leads to the activation of mitogen-activated protein kinases (MAP kinases). In several cell types, this appears to be dependent on the activation of p21ras (Ras). Which G-protein subunit(s) (G alpha or the G beta gamma complex) primarily is responsible for triggering this signaling pathway, however, is unclear. We have demonstrated previously that the carboxyl terminus of the beta-adrenergic receptor kinase, containing its G beta gamma-binding domain, is a cellular G beta gamma antagonist capable of specifically distinguishing G alpha- and G beta gamma-mediated processes. Using this G beta gamma inhibitor, we studied Ras and MAP kinase activation through endogenous Gi-coupled receptors in Rat-1 fibroblasts and through receptors expressed by transiently transfected COS-7 cells. We report here that both Ras and MAP kinase activation in response to lysophosphatidic acid is markedly attenuated in Rat-1 cells stably transfected with a plasmid encoding this G beta gamma antagonist. Likewise in COS-7 cells transfected with plasmids encoding Gi-coupled receptors (alpha 2-adrenergic and M2 muscarinic), the activation of Ras and MAP kinase was significantly reduced in the presence of the coexpressed G beta gamma antagonist. Ras-MAP kinase activation mediated through a Gq-coupled receptor (alpha 1-adrenergic) or the tyrosine kinase epidermal growth factor receptor was unaltered by this G beta gamma antagonist. These results identify G beta gamma as the primary mediator of Ras activation and subsequent signaling via MAP kinase in response to stimulation of Gi-coupled receptors.Item Open Access Disrupting the vicious cycle created by NOX activation in sickle erythrocytes exposed to hypoxia/reoxygenation prevents adhesion and vasoocclusion.(Redox biology, 2019-07) MacKinney, Anson; Woska, Emily; Spasojevic, Ivan; Batinic-Haberle, Ines; Zennadi, RahimaIn sickle cell disease (SCD), recurrent painful vasoocclusive crisis are likely caused by repeated episodes of hypoxia and reoxygenation. The sickle erythrocyte (SSRBC) adhesion plays an active role in vasoocclusion. However, the effect of prolonged reoxygenation after hypoxic stress on the molecular mechanisms in SSRBCs involved in onset of episodic vasoocclusion remain unclear. Exposure of human SSRBCs to hypoxia followed by 2 h reoxygenation, increased reactive oxygen species (ROS) production. Using specific pharmacological inhibitors, we show that excess ROS production in both reticulocytes and mature SSRBCs is regulated by NADPH oxidases (NOXs), the mitogen-activated protein kinase (ERK1/2), and G-protein coupled-receptor kinase 2 (GRK2). Consequently, SSRBC ROS create an intracellular positive feedback loop with ERK1/2 and GRK2 to mediate SSRBC adhesion to endothelium in vitro, and vasoocclusion in a mouse model of vasoocclusion in vivo. Importantly, reducing ROS levels in SSRBCs with redox-active manganese (Mn) porphyrins, commonly known as mimics of superoxide dismutase (SOD), disrupted the cycle created by ROS by affecting NOX and GRK2 activities and ERK1/2 phosphorylation, thus abrogating RBC-endothelial interactions. Inhibition adhesion assays show that LW (ICAM-4, CD242) blood group glycoprotein and CD44 are the RBC adhesion molecules mediating endothelial binding. Conversely, hypoxia/reoxygenation of normal RBCs failed to activate this feedback loop, and adhesion. These findings provide novel insights into the pathophysiological significance of the deleterious cycle created by NOX-dependent ROS, GRK2 and ERK1/2 within SSRBCs activated by hypoxia/reoxygenation, and involved in SSRBC adhesion and vasoocclusion. Thus, this loop in SSRBCs, which can be disrupted by Mn porphyrins, likely drives the profound SCD vasculopathy, and may point to new therapeutic targets to prevent chronic vasoocclusive events.Item Open Access Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond.(Autophagy, 2010-08) Zhou, Xiang; Wang, FanPIK3C3/Vps34 plays important roles in the endocytic and autophagic pathways, both of which are essential for maintaining neuronal integrity. However, it is unclear how inactivating PIK3C3 may affect neuronal endosomal versus autophagic processes in vivo. We generated a conditional null allele of the Pik3c3 gene in mouse, and specifically deleted it in postmitotic sensory neurons. Subsequent analyses reveal several interesting and surprising findings.Item Open Access Emerging treatment options to improve cardiovascular outcomes in patients with acute coronary syndrome: focus on losmapimod.(Drug Des Devel Ther, 2015) Kragholm, Kristian; Newby, Laura Kristin; Melloni, ChiaraEach year, despite optimal use of recommended acute and secondary prevention therapies, 4%-5% of patients with acute coronary syndrome (ACS) experience relapse of ACS or other cardiovascular events including stroke, heart failure, or sudden cardiac death after the index ACS. The sudden atherosclerotic plaque rupture leading to an ACS event is often accompanied by inflammation, which is thought to be a key pathogenic pathway to these excess cardiovascular events. Losmapimod is a novel, oral p38 mitogen-activated protein kinase (MAPK) inhibitor that targets MAPKs activated in macrophages, myocardium, and endothelial cells that occur as a part of global coronary vascular inflammation following plaque rupture. This review aims to 1) discuss the pathophysiological pathways through which p38 MAPKs may play key roles in initiation and progression of inflammatory disease and how losmapimod is thought to counteract these p38 MAPKs, and 2) to describe the efficacy and safety data for losmapimod obtained from preclinical studies and randomized controlled trials that support the hypothesis that it has promise as a treatment for patients with ACS.Item Open Access Emi2-mediated inhibition of E2-substrate ubiquitin transfer by the anaphase-promoting complex/cyclosome through a D-box-independent mechanism.(Mol Biol Cell, 2010-08-01) Tang, Wanli; Wu, Judy Qiju; Chen, Chen; Yang, Chih-Sheng; Guo, Jessie Yanxiang; Freel, Christopher D; Kornbluth, SallyVertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a "pseudosubstrate" mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.Item Open Access Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.(Proc Natl Acad Sci U S A, 2013-02-05) Kurokawa, Manabu; Ito, Takahiro; Yang, Chih-Sheng; Zhao, Chen; Macintyre, Andrew N; Rizzieri, David A; Rathmell, Jeffrey C; Deininger, Michael W; Reya, Tannishtha; Kornbluth, SallyIncreased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations.Item Open Access Functionally active targeting domain of the beta-adrenergic receptor kinase: an inhibitor of G beta gamma-mediated stimulation of type II adenylyl cyclase.(Proc Natl Acad Sci U S A, 1994-04-26) Inglese, J; Luttrell, LM; Iñiguez-Lluhi, JA; Touhara, K; Koch, WJ; Lefkowitz, RJThe beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.Item Open Access G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein.(Proc Natl Acad Sci U S A, 1995-09-26) Touhara, K; Hawes, BE; van Biesen, T; Lefkowitz, RJThe mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.Item Open Access Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes.(Antioxid Redox Signal, 2016-03-01) Suliman, Hagir B; Zobi, Fabio; Piantadosi, Claude AAIMS: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. RESULTS: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. INNOVATION: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. CONCLUSION: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as essential factors in ES cell differentiation as well as in the subsequent maturation of these cells into functional cardiac cells.Item Open Access Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2.(Proc Natl Acad Sci U S A, 2003-09-16) Wei, Huijun; Ahn, Seungkirl; Shenoy, Sudha K; Karnik, Sadashiva S; Hunyady, László; Luttrell, Louis M; Lefkowitz, Robert JStimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular beta-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with approximately 60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular beta-arrestin 2 by small interfering RNA (beta-arrestin dependent). These findings imply the existence of independent G protein- and beta-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct "active" conformations of a seven-membrane-spanning receptor coupled to each.Item Open Access Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells.(Cancer Biol Ther, 2010-01) Misra, Uma K; Pizzo, Salvatore VWe have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.Item Unknown MnSOD is implicated in accelerated wound healing upon Negative Pressure Wound Therapy (NPWT): A case in point for MnSOD mimetics as adjuvants for wound management.(Redox biology, 2019-01) Bellot, Gregory Lucien; Dong, Xiaoke; Lahiri, Amitabha; Sebastin, Sandeep Jacob; Batinic-Haberle, Ines; Pervaiz, Shazib; Puhaindran, Mark EdwardNegative Pressure Wound Therapy (NPWT), a widely used modality in the management of surgical and trauma wounds, offers clear benefits over conventional wound healing strategies. Despite the wide-ranging effects ascribed to NPWT, the precise molecular mechanisms underlying the accelerated healing supported by NPWT remains poorly understood. Notably, cellular redox status-a product of the balance between cellular reactive oxygen species (ROS) production and anti-oxidant defense systems-plays an important role in wound healing and dysregulation of redox homeostasis has a profound effect on wound healing. Here we investigated potential links between the use of NPWT and the regulation of antioxidant mechanisms. Using patient samples and a rodent model of acute injury, we observed a significant accumulation of MnSOD protein as well as higher enzymatic activity in tissues upon NPWT. As a proof of concept and to outline the important role of SOD activity in wound healing, we replaced NPWT by the topical application of a MnSOD mimetic, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+, MnE, BMX-010, AEOl10113) in the rodent model. We observed that MnE is a potent wound healing enhancer as it appears to facilitate the formation of new tissue within the wound bed and consequently advances wound closure by two days, compared to the non-treated animals. Taken together, these results show for the first time a link between NPWT and regulation of antioxidant mechanism through the maintenance of MnSOD activity. Additionally this discovery outlined the potential role of MnSOD mimetics as topical agents enhancing wound healing.