Browsing by Subject "Equisetum"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants.(Nature, 2001-02) Pryer, KM; Schneider, H; Smith, AR; Cranfill, R; Wolf, PG; Hunt, JS; Sipes, SDMost of the 470-million-year history of plants on land belongs to bryophytes, pteridophytes and gymnosperms, which eventually yielded to the ecological dominance by angiosperms 90 Myr ago. Our knowledge of angiosperm phylogeny, particularly the branching order of the earliest lineages, has recently been increased by the concurrence of multigene sequence analyses. However, reconstructing relationships for all the main lineages of vascular plants that diverged since the Devonian period has remained a challenge. Here we report phylogenetic analyses of combined data--from morphology and from four genes--for 35 representatives from all the main lineages of land plants. We show that there are three monophyletic groups of extant vascular plants: (1) lycophytes, (2) seed plants and (3) a clade including equisetophytes (horsetails), psilotophytes (whisk ferns) and all eusporangiate and leptosporangiate ferns. Our maximum-likelihood analysis shows unambiguously that horsetails and ferns together are the closest relatives to seed plants. This refutes the prevailing view that horsetails and ferns are transitional evolutionary grades between bryophytes and seed plants, and has important implications for our understanding of the development and evolution of plants.Item Open Access Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails.(Molecular phylogenetics and evolution, 2005-09) Wikström, N; Pryer, KMUsing DNA sequence data from multiple genes (often from more than one genome compartment) to reconstruct phylogenetic relationships has become routine. Augmenting this approach with genomic structural characters (e.g., intron gain and loss, changes in gene order) as these data become available from comparative studies already has provided critical insight into some long-standing questions about the evolution of land plants. Here we report on the presence of a group II intron located in the mitochondrial atp1 gene of leptosporangiate and marattioid ferns. Primary sequence data for the atp1 gene are newly reported for 27 taxa, and results are presented from maximum likelihood-based phylogenetic analyses using Bayesian inference for 34 land plants in three data sets: (1) single-gene mitochondrial atp1 (exon+intron sequences); (2) five combined genes (mitochondrial atp1 [exon only]; plastid rbcL, atpB, rps4; nuclear SSU rDNA); and (3) same five combined genes plus morphology. All our phylogenetic analyses corroborate results from previous fern studies that used plastid and nuclear sequence data: the monophyly of euphyllophytes, as well as of monilophytes; whisk ferns (Psilotidae) sister to ophioglossoid ferns (Ophioglossidae); horsetails (Equisetopsida) sister to marattioid ferns (Marattiidae), which together are sister to the monophyletic leptosporangiate ferns. In contrast to the results from the primary sequence data, the genomic structural data (atp1 intron distribution pattern) would seem to suggest that leptosporangiate and marattioid ferns are monophyletic, and together they are the sister group to horsetails--a topology that is rarely reconstructed using primary sequence data.Item Open Access Phylogenetic relationships and evolution of extant horsetails, Equisetum, based on chloroplast DNA sequence data (rbcL and trnL-F)(International Journal of Plant Sciences, 2003-01-01) Des Marais, DL; Smith, AR; Britton, DM; Pryer, KMEquisetum is a small and morphologically distinct genus with a rich fossil record. Two subgenera have been recognized based principally on stomatal position and stem branching: subg. Equisetum (eight species; superficial stomates; stems branched) and subg. Hippochaete (seven species; sunken stomates; stems generally unbranched). Prior attempts at understanding Equisetum systematics, phylogeny, and character evolution have been hampered by the high degree of morphological plasticity in the genus as well as by frequent hybridization among members within each subgenus. We present the first explicit phylogenetic study of Equisetum, including all 15 species and two samples of one widespread hybrid, Equisetum x ferrissii, based on a combined analysis of two chloroplast markers, rbcL and trnL-F. Our robustly supported phylogeny identifies two monophyletic clades corresponding to the two subgenera recognized by earlier workers. The phylogenetic placement of Equisetum bogotense, however, is ambiguous. In maximum likelihood analyses, it allies with subg. Hippochaete as the most basal member, while maximum parsimony places it as sister to the rest of the genus. A consensus phylogeny from the two analyses is presented as a basal trichotomy (E. bogotense, subg. Hippochaete, subg. Equisetum), and morphological character evolution is discussed. We detected rate heterogeneity in the rbcL locus between the two subgenera that can be attributed to an increased rate of nucleotide substitution (transversions) in subg. Hippochaete. We calculated molecular-based age estimates using the penalized likelihood approach, which accounts for rate heterogeneity and does not assume a molecular clock. The Equisetum crown group appears to have diversified in the early Cenozoic, whereas the Equisetaceae total group is estimated to have a Paleozoic origin. These molecular-based age estimates are in remarkable agreement with current interpretations of the fossil record.Item Open Access The evolutionary history of ferns inferred from 25 low-copy nuclear genes.(Am J Bot, 2015-07) Rothfels, CJ; Li, F; Sigel, EM; Huiet, L; Larsson, A; Burge, DO; Ruhsam, M; Deyholos, M; Soltis, DE; Stewart Jr, CNUNLABELLED: • PREMISE OF THE STUDY: Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS: Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS: Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS: Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.