Browsing by Subject "Estrogens"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access Application of the estrogen threshold hypothesis to the physiologic hypoestrogenemia of lactation.(Breastfeeding medicine : the official journal of the Academy of Breastfeeding Medicine, 2015-03) Agarwal, Sanjay K; Kim, Julie; Korst, Lisa M; Hughes, Claude LOBJECTIVE: This study determined the impact of breastfeeding on hypoestrogenic symptoms among women in the postpartum period and correlated these findings with the Estrogen Threshold Hypothesis, which postulates that the hypoestrogenic symptoms experienced are related to circulating estrogen levels. STUDY DESIGN: Using a survey instrument that combined previously validated assessments of postpartum mood changes and menopausal symptoms, women were evaluated in the immediate postpartum period, prior to hospital discharge, and at 3 and 6 weeks postpartum. Each time period was analyzed independently, in a cross-sectional design, where women were categorized as "breastfeeding" or "bottle feeding." RESULTS: Of 236 women recruited, 171 (72.5%) intended to breastfeed, and 62 (26.3%) intended to bottle feed. At both the 3- and 6-week postpartum evaluations, a similar percentage of women in the breastfeeding and bottle-feeding groups reported hot flashes. However, breastfeeding women were more likely to report vaginal dryness than those who did not breastfeed: 20/150 (13.3%) versus 3/80 (3.8%) at 3 weeks, p<0.05; 25/143 (17.5%) versus 2/87 (2.3%) at 6 weeks, p<0.001. CONCLUSIONS: The Estrogen Threshold Hypothesis accurately predicts the findings of increased reported vaginal dryness but not hot flashes during lactation.Item Open Access Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology.(Frontiers in immunology, 2022-01) McCallion, Alison; Nasirzadeh, Yasmin; Lingegowda, Harshavardhan; Miller, Jessica E; Khalaj, Kasra; Ahn, SooHyun; Monsanto, Stephany P; Bidarimath, Mallikarjun; Sisnett, Danielle J; Craig, Andrew W; Young, Steven L; Lessey, Bruce A; Koti, Madhuri; Tayade, ChandrakantEndometriosis is an estrogen dependent, chronic inflammatory disease characterized by the growth of endometrial lining outside of the uterus. Mast cells have emerged as key players in regulating not only allergic responses but also other mechanisms such as angiogenesis, fibrosis, and pain. The influence of estrogen on mast cell function has also been recognized as a potential factor driving disease pathophysiology in number of allergic and chronic inflammatory conditions. However, precise information is lacking on the cross talk between endocrine and immune factors within the endometriotic lesions and whether that contributes to the involvement of mast cells with disease pathophysiology. In this study, we observed a significant increase in mast cell numbers within endometriotic lesions compared to matched eutopic endometrium from the same patients. Compared to eutopic endometrium, endometriotic lesions had significantly higher levels of stem cell factor (SCF), a potent growth factor critical for mast cell expansion, differentiation, and survival for tissue resident mast cells. Targeted mRNA Q-PCR array revealed that the endometriotic lesions harbour microenvironment (upregulation of CPA3, VCAM1, CCL2, CMA1, CCR1, and KITLG) that is conducive to mast cells recruitment and subsequent differentiation. To examine cross-talk of mast cells within the endometriotic lesion microenvironment, endometriotic epithelial cells (12Z) and endometrial stromal cells (hESC) incubated with mast cell-conditioned media showed significantly increased production of pro-inflammatory and chemokinetic cytokines. To further understand the impact of estrogen on mast cells in endometriosis, we induced endometriosis in C57BL/6 mice. Mature mast cells were significantly higher in peritoneal fluid of estrogen-treated mice compared to untreated mice within the sham operated groups. Mouse endometriotic lesion tissue revealed several genes (qRT-PCR) relevant in mast cell biology significantly upregulated in the estrogen treated, endometriosis-induced group compared to control endometrium. The endometriotic lesions from estrogen treated mice also had significantly higher density of Alcian blue stained mast cells compared to untreated lesions or control endometrium. Collectively, these findings suggest that endometriotic lesions provide a microenvironment necessary for recruitment and differentiation of mast cells. In turn, mast cells potentially release pro-inflammatory mediators that contribute to chronic pelvic pain and endometriosis disease progression.Item Open Access Hormonal management of menopausal symptoms in women with a history of gynecologic malignancy.(Menopause (New York, N.Y.), 2020-02) Harris, Benjamin S; Bishop, Katherine C; Kuller, Jeffrey A; Ford, Anne C; Muasher, Lisa C; Cantrell, Sarah E; Price, Thomas MObjective
The aim of the study was to review the role of hormone therapy in menopausal patients with breast cancer and gynecologic malignancies.Methods
We searched MEDLINE (via PubMed) using a combination of keywords and database-specific subject headings for the following concepts: menopause, hormone therapy, and cancer. Editorials, letters, case reports, and comments were excluded, as were non-English articles. Additional references were identified by hand-searching bibliographies of included articles. The searches yielded a total of 1,484 citations. All citations were imported into EndNote X9, where they were screened by the authors.Results
In breast cancer survivors, systemic hormone therapy is not recommended, whereas local low-dose estrogen therapy may be considered after discussion with the patient's oncologist. Among endometrial cancer survivors, hormone therapy is considered safe in low-risk cancers but should be avoided in high-risk subtypes. For survivors of epithelial ovarian cancer and cervical cancer, hormone therapy can be considered, but should be avoided in women with estrogen-sensitive histologic subtypes.Conclusions
The risks of hormone therapy should be assessed on an individual basis, with consideration of age, type of hormone therapy, dose, duration of use, regimen, route, and prior exposure. Systemic hormone therapy is not recommended in breast cancer survivors, whereas vaginal low-dose estrogen appears safe. Hormone therapy may be used by endometrial, cervical, and ovarian cancer survivors with low-risk, non-estrogen-receptor-positive subtypes. Video Summary: http://links.lww.com/MENO/A516.Item Open Access Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study.(BMC Med Genet, 2010-01-19) Chiba-Falek, Ornit; Nichols, Marshall; Suchindran, Sunil; Guyton, John; Ginsburg, Geoffrey S; Barrett-Connor, Elizabeth; McCarthy, Jeanette JBACKGROUND: Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. METHODS: We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII) expression in 91 human liver tissues using quantitative real-time PCR. RESULTS: Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p=9.2x10(-4)) and triglycerides (p=1.3x10(-3)) and the triglyceride:HDL cholesterol ratio (p=2.7x10(-4)). These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women<45 years old (p=0.002). CONCLUSIONS: Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.Item Open Access Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma.(The Journal of clinical investigation, 2021-12) Chakraborty, Binita; Byemerwa, Jovita; Shepherd, Jonathan; Haines, Corinne N; Baldi, Robert; Gong, Weida; Liu, Wen; Mukherjee, Debarati; Artham, Sandeep; Lim, Felicia; Bae, Yeeun; Brueckner, Olivia; Tavares, Kendall; Wardell, Suzanne E; Hanks, Brent A; Perou, Charles M; Chang, Ching-Yi; McDonnell, Donald PImmune checkpoint blockade (ICB) therapies have significantly prolonged patient survival across multiple tumor types, particularly in melanoma. Interestingly, sex-specific differences in response to ICB have been observed, with males receiving a greater benefit from ICB than females, although the mechanism or mechanisms underlying this difference are unknown. Mining published transcriptomic data sets, we determined that the response to ICBs is influenced by the functionality of intratumoral macrophages. This puts into context our observation that estrogens (E2) working through the estrogen receptor α (ERα) stimulated melanoma growth in murine models by skewing macrophage polarization toward an immune-suppressive state that promoted CD8+ T cell dysfunction and exhaustion and ICB resistance. This activity was not evident in mice harboring macrophage-specific depletion of ERα, confirming a direct role for estrogen signaling within myeloid cells in establishing an immunosuppressed state. Inhibition of ERα using fulvestrant, a selective estrogen receptor downregulator (SERD), decreased tumor growth, stimulated adaptive immunity, and increased the antitumor efficacy of ICBs. Further, a gene signature that determines ER activity in macrophages predicted survival in patients with melanoma treated with ICB. These results highlight the importance of E2/ER signaling as a regulator of intratumoral macrophage polarization, an activity that can be therapeutically targeted to reverse immune suppression and increase ICB efficacy.Item Open Access Loss of epithelial oestrogen receptor α inhibits oestrogen-stimulated prostate proliferation and squamous metaplasia via in vivo tissue selective knockout models.(The Journal of pathology, 2012-01) Chen, Ming; Yeh, Chiuan-Ren; Chang, Hong-Chiang; Vitkus, Spencer; Wen, Xing-Qiao; Bhowmick, Neil A; Wolfe, Andrew; Yeh, ShuyuanSquamous metaplasia (SQM) is a specific phenotype in response to oestrogen in the prostate and oestrogen receptor (ER) α is required to mediate this response. Previous studies utilizing tissue recombination with seminal vesicle (SV) mesenchyme and prostatic ductal tips from wild type and ERαKO mice suggested that both epithelial and stromal ERα are necessary for SQM. However, tissue recombination is conducted in the renal capsule of immune-deficient mice, in which the microenvironment is different from normal prostate microenvironment in the intact mice. Furthermore, whether the requirement of stromal ERα in the SV for developing SQM is the same as in the prostate is unknown. Therefore, there is a clear need to evaluate the respective roles of ERα in prostate epithelial versus stromal compartments in the intact mouse. Here we generated a mouse model that has selectively lost ERα in either stromal (FSP-ERαKO) or epithelial prostate cells (pes-ERαKO) to determine the requirements of ERα for oestrogen-stimulated prostate proliferation and SQM. Our results indicated that FSP-ERαKO prostates develop full and uniform SQM, which suggests that loss of the majority (~65%) of stromal ERα will not influence oestrogen-mediated SQM. In contrast, loss of epithelial ERα inhibits oestrogen-mediated prostate growth and SQM evidenced by decreasing cytokertin 10 positive squamous cell stratification and differentiation, by reduced ERα protein expression in SQM compared to wild type mice ERα, and by the presence of normal proliferative activities in the oestrogen-treated pes-ERαKO prostates. These in vivo results suggest that epithelial ERα is required for oestrogen-mediated proliferative response and could be an appropriate target for preventing aberrant oestrogen signalling in the prostate.Item Open Access Mitochondrial Quality Control as a Therapeutic Target.(Pharmacol Rev, 2016-01) Suliman, Hagir B; Piantadosi, Claude AIn addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.Item Open Access Oestrogen shuts the door on SOX9.(BMC Biol, 2010-08-31) Mork, Lindsey; Capel, BlancheOestrogen exerts a robust yet imperfectly understood effect on sexual development in vertebrate embryos. New work by Pask and colleagues in BMC Biology indicates that it may interfere with male development by preventing nuclear localization of SOX9, a master regulator of the testis differentiation pathway. See research article http://www.biomedcentral.com/1741-7007/8/113.Item Open Access Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens.(Environmental health perspectives, 1988-06) Hughes, CLPlants have physical and chemical mechanisms for defense from attack by animals. Phytochemical defenses that protect plants from attack by insects include antifeedants, insecticides, and insect growth regulators. Phytochemical options exist by which plants can modulate the fertility of the other major group of plant predators, vertebrate herbivores, and thereby reduce cumulative attacks by those herbivores. The success of such a defense depends upon phytochemical mimicry of vertebrate reproductive hormones. Phytoestrogens do mimic reproductive hormones and are proposed to be defensive substances produced by plants to modulate the fertility of herbivores.Item Open Access Progesterone Signaling in Endometrial Epithelial Organoids.(Cells, 2022-05) Hewitt, Sylvia C; Wu, San-Pin; Wang, Tianyuan; Young, Steven L; Spencer, Thomas E; DeMayo, Francesco JFor pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.Item Open Access The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects.(BioMed research international, 2015-01) Hughes, CL; Foster, WG; Agarwal, SKIn addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women's health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herein we propose a number of opportunities for research and development of new therapeutics to address the unmet needs in the treatment of endometriosis per se and its ancillary risks for other diseases in women across the lifespan.