Browsing by Subject "Eukaryota"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management.(Ecol Appl, 2010-04) Heffernan, James B; Liebowitz, Dina M; Frazer, Thomas K; Evans, Jason M; Cohen, Matthew JContradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study illustrates the importance of an adaptive approach that explicitly evaluates paradigms as hypotheses and actively seeks alternative explanations.Item Open Access Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play.(Philos Trans R Soc Lond B Biol Sci, 2009-06-12) Post, DM; Palkovacs, EPInteractions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.Item Open Access Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation.(PLoS pathogens, 2022-12) Catacalos, Cassandra; Krohannon, Alexander; Somalraju, Sahiti; Meyer, Kate D; Janga, Sarath Chandra; Chakrabarti, Kausik"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.Item Open Access Evolution of networks and sequences in eukaryotic cell cycle control.(Philos Trans R Soc Lond B Biol Sci, 2011-12-27) Cross, Frederick R; Buchler, Nicolas E; Skotheim, Jan MThe molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.Item Open Access Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams.(Philos Trans R Soc Lond B Biol Sci, 2009-06-12) Palkovacs, EP; Marshall, MC; Lamphere, BA; Lynch, BR; Weese, DJ; Fraser, DF; Reznick, DN; Pringle, CM; Kinnison, MTEvolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus-guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.Item Open Access Four reasons for scepticism about a human major transition in social individuality.(Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2023-03) McShea, Daniel WThe 'major transitions in evolution' are mainly about the rise of hierarchy, new individuals arising at ever higher levels of nestedness, in particular the eukaryotic cell arising from prokaryotes, multicellular individuals from solitary protists and individuated societies from multicellular individuals. Some lists include human societies as a major transition, but based on a comparison with the non-human transitions, there are reasons for scepticism. (i) The foundation of the major transitions is hierarchy, but the cross-cutting interactions in human societies undermine hierarchical structure. (ii) Natural selection operates in three modes-stability, growth and reproductive success-and only the third produces the complex adaptations seen in fully individuated higher levels. But human societies probably evolve mainly in the stability and growth modes. (iii) Highly individuated entities are marked by division of labour and commitment to morphological differentiation, but in humans differentiation is mostly behavioural and mostly reversible. (iv) As higher-level individuals arise, selection drains complexity, drains parts, from lower-level individuals. But there is little evidence of a drain in humans. In sum, a comparison with the other transitions gives reasons to doubt that human social individuation has proceeded very far, or if it has, to doubt that it is a transition of the same sort. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.Item Open Access Hierarchical complexity and the size limits of life.(Proceedings. Biological sciences, 2017-06) Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve COver the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases.Item Open Access Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis.(The Journal of eukaryotic microbiology, 1999-07) Turner, S; Pryer, KM; Miao, VP; Palmer, JDSmall subunit rRNA sequence data were generated for 27 strains of cyanobacteria and incorporated into a phylogenetic analysis of 1,377 aligned sequence positions from a diverse sampling of 53 cyanobacteria and 10 photosynthetic plastids. Tree inference was carried out using a maximum likelihood method with correction for site-to-site variation in evolutionary rate. Confidence in the inferred phylogenetic relationships was determined by construction of a majority-rule consensus tree based on alternative topologies not considered to be statistically significantly different from the optimal tree. The results are in agreement with earlier studies in the assignment of individual taxa to specific sequence groups. Several relationships not previously noted among sequence groups are indicated, whereas other relationships previously supported are contradicted. All plastids cluster as a strongly supported monophyletic group arising near the root of the cyanobacterial line of descent.Item Open Access Mapping the complexity of transcription control in higher eukaryotes.(Genome Biol, 2010) Tomancak, Pavel; Ohler, UweRecent genomic analyses suggest the importance of combinatorial regulation by broadly expressed transcription factors rather than expression domains characterized by highly specific factors.Item Open Access Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites.(Wiley interdisciplinary reviews. RNA, 2022-09) Davis, Justin Alexander; Chakrabarti, KausikTelomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.